首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of Ln(II)-Co(4) isocarbonyl polymeric arrays, [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3; x = 0, 1) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4), were prepared and structurally characterized. Transmetalation involving Ln(0) and Hg[Co(CO)(4)](2) in Et(2)O yields [(Et(2)O)(3)Ln[Co(4)(CO)(11)]]( infinity ) (1, Ln = Yb; 2, Ln = Eu). Dissolution of the solvent-separated ion pairs [Ln(THF)(x)()][Co(CO)(4)](2) (Ln = Yb, x = 6; Ln = Eu) in Et(2)O affords [(Et(2)O)(2)(THF)Yb[Co(4)(CO)(11)]]( infinity ) (3) and [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4). In these reactions, oxidation and condensation of the [Co(CO)(4)](-) anions result in formation of the new tetrahedral cluster [Co(4)(CO)(11)](2)(-). The two types of Ln(II)-Co(4) compounds contain different isomers of [Co(4)(CO)(11)](2)(-), and, consequently, the structures of the infinite isocarbonyl networks are distinct. The cluster in [(Et(2)O)(3)(-)(x)()(THF)(x)()Ln[Co(4)(CO)(11)]]( infinity ) (1-3) possesses pseudo C(3)(v)() symmetry (an apical Co, three basal Co atoms; one face-bridging, three edge-bridging, seven terminal carbonyls) and connects to Ln(II) centers through eta(2),micro(4)- and eta(2),micro(3)-carbonyls to generate a 2-D puckered sheet. In contrast, [(THF)(5)Eu[Co(4)(CO)(11)]]( infinity ) (4) incorporates a C(2)(v)() symmetric cluster (two unique Co environments; two face-bridging, one edge-bridging, eight terminal carbonyls), and isocarbonyl linkages (eta(2),micro(4)-carbonyls) to Eu(II) atoms create a 1-D zigzag chain. Complexes 1-4 contain the first reported eta(2),micro(4)-CO bridges between a Ln and a transition-metal carbonyl cluster. Infrared spectroscopic studies revealed that the isocarbonyl associations to Ln(II) persist in solution. The solution structure and dynamic behavior of the [Co(4)(CO)(11)](2)(-) cluster in 1 was investigated by variable-temperature (59)Co and (13)C NMR spectroscopies.  相似文献   

2.
The structures, luminescent and magnetic properties of three series of coordination polymers with formulas-{[Fe(3)Ln(2)(L(1))(6)(H(2)O)(6)]·xH(2)O}(n) (Ln = Pr-Er; 1-9), {[Co(3)Ln(2)(L(1))(6)(H(2)O)(6)]·yH(2)O}(n) (Ln = Pr-Dy, Yb; 10-17) and {[Co(2)Ln(L(2))(HL(2))(2)(H(2)O)(7)]·zH(2)O}(n) (Ln = Eu-Yb; 18-25) (H(2)L(1) = pyridine-2,6-dicarboxylic acid, H(3)L(2) = 4-hydroxyl-pyridine-2,6-dicarboxylic acid) were systematically explored in this contribution. [Fe(II)(HS)-L(1)-Ln(III)] (1-9) and [Co(II)-L(1)-Ln(III)] (10-17) series are isostructural, and display 3D porous networks with 1D nanosized channels constructed by Fe/Co-OCO-Ln linkages. Furthermore, two types of "water" pipes are observed in 1D channels. [Co(II)-L(2)-Ln(III)] (18-25) series exhibit 2D open frameworks based on double-stranded helical motifs, which are further assembled into 3D porous structures by intermolecular hydrogen bonds between hydroxyl groups. The variety of the resulting structures is mainly due to the HO-substitution effect. These 3D coordination polymers show considerably high thermal stability, and do not decomposed until 400 °C. The high-spin Fe(II) ion in [Fe(II)(HS)-L(1)-Ln(III)] was confirmed by X-ray photoelectron spectroscopy, M?ssbauer spectroscopy and magnetic studies. The luminescent spectra of coordination polymers associated with Sm(III), Eu(III), Tb(III) and Dy(III) were systematically investigated, and indicate that different d-metal ions in d-f systems may result in dissimilar luminescent properties. The magnetic properties of [Fe(II)(HS)-L(1)-Ln(III)] (3, 6, 7, 9, 13), [Co(II)-L(1)-Ln(III)] (15-17) and [Co(II)-L(2)-Ln(III)] (19-24) coordination polymers were also studied, and the χ(M)T values decrease with cooling. For the single ion behavior of Co(II) and Ln(III) ions, the magnetic coupling nature between Fe(II)(HS)/Co(II) and Ln(III) ions cannot be clearly depicted as antiferromagnetic coupling.  相似文献   

3.
Infrared and laser Raman spectral investigations of [Ni(II)(dppe)Cl2] and [Co(III)(dppe)2Cl2]PF6 have been made to determine the conformation and nature of bonding in Ni(II) and Co(III) dppe complexes. The stereochemistry of the two forms of these complexes has been confirmed. The role of steric interferences in cis-Planar [Ni(II)(dppe)Cl2] complex is interpreted in terms of reduction in symmetry upon coordination. The strong trans influence of the chelating dppe ligand is observed in the [Co(III)(dppe)2Cl2]PF6 complex. Both complexes exhibit the effect of crystalline field on molecular vibrations. The Fermi resonance overtone is also observed in these complexes.  相似文献   

4.
A family of homo-valent [Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (1), [(MeOH)(2) is a subset of Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (2) (where L(1)H = 2-iminomethyl-6-methoxyphenol) and hetero-valent [(NO(3))(2) is a subset of Co(III)Co(II)(6)(OH)(6)(L(2))(6)](NO(3))·3MeCN (4) (where L(2)H = 2-iminophenyl-6-methoxyphenol) complexes possess metallic skeletons describing planar hexagonal discs. Their organic exteriors form double-bowl shaped topologies, and coupled with their 3-D connectivity, this results in the formation of molecular cavities in the solid state. These confined spaces are shown to behave as host units in the solid state for guests including solvent molecules and charge balancing counter anions. Magnetic susceptibility measurements on 2 and 4 reveal weak ferro- and ferrimagnetism, respectively. The utilisation of other Co(II) salt precursors gives rise to entirely different species including the mononuclear and trinuclear complexes [Co(II)(L(2))(2)] (5) and [Co(III)(2)Na(I)(1)(L(3))(6)](BF(4)) (6) (where L(3)H = 2-iminomethyl-4-bromo-6-methoxyphenol).  相似文献   

5.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

6.
The structural and magnetic properties of dinuclear [Co(II)(NCMe)(5)Co(II)(NCS)(4)]·MeCN have been investigated. The structure consists of an octahedral Co(II)(NCMe)(5) center connected to a tetrahedral Co(II)(NCS)(4) center bridged by a μ(1,3)-NCS(-) ligand. The bridging NCS(-) weakly couples the pair of S = (3)/(2) Co(II) spin sites, as evidenced by the magnetic data being best fit by the Curie-Weiss expression with θ = -15.5 K.  相似文献   

7.
Herein, we report the synthesis, structural investigation, and magnetic and photophysical properties of a series of 13 [Zn(II)Ln(III)] heterodinuclear complexes, which have been obtained employing a Schiff-base compartmental ligand derived from o-vanillin [H(2)valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)]. The complexes have been synthesized starting from the [Zn(valpn)(H(2)O)] mononuclear compound and the corresponding lanthanide nitrates. The crystallographic investigation indicated two structural types: the first one, [Zn(H(2)O)(valpn)Ln(III)(O(2)NO)(3)], contains 10-coordinated Ln(III) ions, while in the second one, [Zn(ONO(2))(valpn)Ln(III)(H(2)O)(O(2)NO)(2)]·2H(2)O, the rare earth ions are nine-coordinated. The Zn(II) ions always display a square-pyramidal geometry. The first structural type encompasses the larger Ln ions (4f(0)-4f(9)), while the second is found for the smaller ions (4f(8)-4f(11)). The dysprosium derivative crystallizes in both forms. Luminescence studies for the heterodinuclear compounds containing Nd(III), Sm(III), Tb(III), Dy(III), and Yb(III) revealed that the [Zn(valpn)(H(2)O)] moiety acts as an antenna. The magnetic properties for the paramagnetic [Zn(II)Ln(III)] complexes have been investigated.  相似文献   

8.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

9.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

10.
The first 3d-4f-5d heterotrimetallic complexes using [W(V)(bipy)(CN)(6)](-) as a metalloligand were synthesized (bipy = 2,2'-bipyridine). The structural and magnetic properties of three [Cu(II)Ln(III)W(V)] complexes (Ln = Gd, Ho, Tb) are discussed.  相似文献   

11.
The new phenol-imidazole pro-ligands (R)LH react with Co(BF(4))(2).6H(2)O in the presence of Et(3)N to form the corresponding [Co(II)((R)L)(2)] compound (R = Ph (1), PhOMe (2), or Bz (3)). Also, (Bz)LH, reacts with Co(ii) in the presence of Et(3)N and H(2)O(2) to form [Co(III)((Bz)L)(3)](4). The structures of 1.2.5MeCN, 2.2DMF, 3.4MeOH, and 4.4DMF have been determined by X-ray crystallography. 1, 2, and 3 each involve Co(II) bound to two N,O-bidentate ligands with a distorted tetrahedral coordination sphere; 4 involves Co(III) bound to three N,O-bidentate ligands in a mer-N(3)O(3) distorted octahedral geometry. [Co(II)((R)L)(2)](R = Ph or PhOMe) undergo two, one-electron, oxidations. The products of the first oxidation, [1](+) and [2](+), have been synthesised by the chemical oxidation of 1 and 2, respectively; these cations, formulated as [Co(II)((R)L*)((R)L)(2)](+), comprise one phenoxyl radical and one phenolate ligand bound to Co(II) and are the first phenoxyl radical ligand complexes of tetra-coordinated Co(II). 4 undergoes two, one-electron, ligand-based oxidations, the first of which produces [4](+), [Co(III)((Bz)L*)((Bz)L)(2)](+). Unlike [1](+) and [2](+), product of the one-electron oxidation of [Co(II)((Bz)L)(2)], [3](+), is unstable and decomposes to produce [4](+). These studies have demonstrated that the chemical properties of [M(II)((R)L*)((R)L)(2)](+)(M = Co, Cu, Zn) are highly dependent on the nature of both the ligand and the metal centre.  相似文献   

12.
The reactivity of cobalt(II) salts towards H(3)L (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) was studied in different reaction conditions. Accordingly, the interaction of cobalt(II) acetate with H(3)L in methanol gives rise to the discrete complex [Co(III)(2)L(OAc)(2)(OMe)]*1.5H(2)O.MeOH, 1. Reaction of cobalt(II) acetylacetonate with H(3)L in the presence of dicarboxylic acids was also investigated. Thus, when cobalt(II) acetylacetonate and H(3)L are mixed with terephthalic or malonic acid in 4 : 2 : 1 molar ratios, the mixed valent [Co(II/III)(2)L(acac)(p-O(2)CC(6)H(4)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*2H(2)O*2MeOH, 2 and [Co(II/III)(2)L(acac)(O(2)CCH(2)CO(2)H)][Co(II/III)(2)L(acac)(OH)]*7H(2)O, complexes are isolated. Decreasing the pH of the medium, by addition of a second mol of dicarboxylic acid, leads to [Co(II/III)(2)L(O(2)CCH(2)CO(2))(MeOH)]*2MeOH, 4, while the reaction with terephthalic acid does not proceed. 1, 2 and 4 were crystallographically characterised and all the complexes are dinuclear, with hydrogen bonds that expand the initial nodes. The magnetic characterisation, as well as the NMR spectroscopy, indicates a diamagnetic nature for 1, in agreement with the presence of Co(III), showing the aerial oxidation suffered by the cobalt(II) ions. Nevertheless, are paramagnetic. Temperature variable magnetic measurements were recorded for the crystallographically characterised complexes 2 and 4 and these studies confirm the mixed valence Co(II)/Co(III) nature of the compounds. The best fits of the magnetic data give an axial distortion parameter Delta = 628.7 cm(-1) for 2 and 698.8 cm(-1) for 4, and spin-orbit coupling constant lambda = -117.8 cm(-1) for 2 and -107.0 cm(-1) for 4. Therefore, this study shows that the oxidation degree of the initial cobalt(ii) salt by atmospheric oxygen can be controlled according to the pH of the medium.  相似文献   

13.
Slow evaporation of aqueous solutions containing mixtures of Na 2[Os(phen)(CN) 4], Ln(III) salts (Ln = Pr, Nd, Gd, Er, Yb), and (in some cases) an additional ligand such as 1,10-phenanthroline (phen) or 2,2'-bipyrimidine (bpym) afforded crystalline coordination networks in which the [Os(phen)(CN) 4] (2-) anions are coordinated to Ln(III) cations via Os-CN-Ln cyanide bridges. The additional diimine ligands, if present, also coordinate to the Ln(III) centers. Several types of structure have been identified by X-ray crystallographic studies. Photophysical studies showed that the characteristic emission of the [Os(phen)(CN) 4] (2-) chromophore, which occurs at approximately 680 nm in this type of coordination environment with a triplet metal-to-ligand charge transfer ( (3)MLCT) energy content of approximately 16 000 cm (-1), is quenched by energy transfer to those Ln(III) centers (Pr, Nd, Er, Yb) that have low-lying f-f states capable of accepting energy from the Os(II)-based (3)MLCT state. Time-resolved studies on the residual (partially quenched) Os(II)-based luminescence allowed the rates of Os(II) --> Ln(III) energy transfer to be evaluated. The measured rates varied substantially, having values of >5 x 10 (8), approximately 1 x 10 (8), and 2.5 x 10 (7) s (-1) for Ln = Nd, Er or Yb, and Pr, respectively. These differing rates of Os(II) --> Ln(III) energy transfer can be rationalized on the basis of the availability of f-f states of the different Ln(III) centers that are capable of acting as energy acceptors. In general, the rates of Os(II) --> Ln(III) energy transfer are an order of magnitude faster than the rates of Ru(II) --> Ln(III) energy transfer in a previously described series of [Ru(bipy)(CN) 4] (2-)/Ln(III) networks. This is ascribed principally to the lower energy of the Os(II)-based (3)MLCT state, which provides better spectroscopic overlap with the low-lying f-f states of the Ln(III) ions.  相似文献   

14.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

15.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

16.
The kinetics of reduction of two cobalt(III) complexes with similar redox potentials by hexacyanoferrate(II) were investigated in water and in reverse micelle (RM) microemulsions. The RMs were composed of water, surfactant [(sodium(bis(2-ethylhexylsulfosuccinate)), NaAOT], and isooctane. Compared to the reaction in water, the reduction rates of (ethylenediaminetetraacetato)cobaltate(III) by hexacyanoferrate(II) were dramatically suppressed in RM microemulsions whereas a slight rate increase was observed for reduction of bis-(2,6-dipicolinato)cobaltate(III). For example, the ferrocyanide reduction of [Co(dipic)(2)](-) increased from 55 M(-1) s(-1)in aqueous media to 85 M(-1) s(-1) in a w(o) = 20 RM. The one-dimensional (1-D) and two-dimensional (2-D) (1)H NMR and FT-IR studies are consistent with the reduction rate constants of these two complexes being affected by their location within the RM. Since reduction of [Co(edta)](-) is switched off, in contrast to [Co(dipic)(2)](-), these observations are attributed to the penetration of the [Co(edta)](-) into the interfacial region of the RM whereas [Co(dipic)(2)](-) is in a region highly accessible to the water pool and thus hexacyanoferrate(II). These results demonstrated that compartmentalization completely turns off a redox reaction in a dynamic microemulsion system by either reactant separation or alteration of the redox potentials of the reactants.  相似文献   

17.
A novel dodecanuclear complex, [{(HL)(L)(DMF)Cu(II)Gd(III)(DMF)(H(2)O)}(6)]·6DMF (1; DMF = N,N-dimethylformamide), has been obtained using the ligand resulting from the condensation of 3-formylsalicylic acid with hydroxylamine (H(3)L). The exchange interaction between the phenoxo-bridged Cu(II) and Gd(III) ions is weak ferromagnetic (J = +1.01 cm(-1)). The combination of a high-spin ground state with small anisotropy leads to a significant magnetocaloric effect [-ΔS(m)(0-7 T) = 23.5 J K g(-1) K(-1) at ~2 K].  相似文献   

18.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

19.
Integration of mononuclear [Cr(CN)6]3- and preorganized trinuclear [Co2Ln(L)2]3+ complexes provides novel trimetallic magnets having a 3-D pillared-layer framework with an alternate array of 2-D layer extended by Cr(III)-CN-Co(II) linkages and Ln(III) ion. The overall magnetic nature can be systematically controlled by Ln(III) ions inserted between the 2-D ferromagnetic layers.  相似文献   

20.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号