首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶胶凝胶法制备了La0.7Sr0.3Cr1-xMnxO3-δ(x=0.3,0.4,0.5,0.6)系列阳极粉体。在1000℃下焙烧后,XRD结果显示粉体物相为单一的钙钛矿相。制备以La0.7Sr0.3Cr1-xMnxO3-δ为阳极,Ce0.8Sm0.2O1.9(SDC)为电解质,Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC复合阴极的电解质支撑型固体氧化物燃料单电池。由扫描电子显微镜(SEM)观察表明单电池电解质致密,阳极孔径分布均匀,厚度约为20μm,多孔阴极厚度为10μm。采用直流四电极法测试以La0.7Sr0.3Cr0.5Mn0.5O3-δ为阳极用湿氢气作燃料时在800℃下获得最大输出功率为232.84 mW.cm-2,短路电流为0.92 A.cm-2。  相似文献   

2.
合成具有单相正交钙钛矿结构的La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4)系列样品, 碘量滴定法实验结果表明, 随着Sr掺入量的增加, Cu3+离子的含量逐渐增加. 电学性能研究结果表明, La0.7Sr0.3CuO3-δ电导率最高, 与La0.6Sr0.4CoO3-δ相比, La0.7Sr0.3CuO3-δ具有更好的电化学性能, 可作为一种新的中温固体氧化物燃料电池(IT-SOFC)阴极材料. 将La0.7Sr0.3CuO3-δ与不同质量比的中温电解质Ce0.85Sm0.15O2-δ(SDC) 固相混合, 制备复合阴极材料, 电化学性能测试结果表明, 掺入适量的SDC有利于降低La0.7Sr0.3CuO3-δ电极的极化, 获得性能更优越的IT-SOFC阴极材料, 提高在中温区单电池的输出功率.  相似文献   

3.
采用固相反应法合成钙钛矿氧化物材料Ln0.5Sr0.5CoO3(h=La,Pr,Nd,Sm,Eu)的超细粉体,研究了不同稀土元素掺杂时的晶体结构和电输运性能,分析了该钙钛矿体系结构的形成过程。实验表明,当烧结温度达到1200℃时,通过固相反应法可以形成稳定的单一的钙钛矿相。样品电导率在700℃附近出现最大值,低温段的导电行为符合小极化子导电机制,La0.5Sr0.5CoO3材料的电导率在中温范围内最大,适合作为中温固体燃料电池的阴极材料。  相似文献   

4.
采用溶胶-凝胶法合成(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00、0.02、0.05、0.10)氧化物,通过X射线衍射(XRD)、场发射扫描电镜(FESEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明:所有样品均为单一萤石立方结构;少量MoO3的加入提高了材料的致密性,降低了材料的总电阻、晶界电阻和晶界电阻在总电阻中所占比例,提高了材料的电导率.1200 ℃烧结样品24 h,测试温度700℃时,(Ce0.9Nd0.1)1-xMoxO2-δ(x=O.00)总电导率和晶界电导率分别为0.05和O.19 S·m-1,掺Mo材料(Ce0.9Nd0.1)1-xMoxO2(x=0.02)的总电导率和晶界电导率分别为2.42和3.96 S·m-1.  相似文献   

5.
采用尿素-硝酸盐法制备了Sm0.5Sr0.5Co1-xCuxO3-δ(x=0~0.5)阴极材料.用TG-DSC,SEM,XRD和热膨胀仪对材料的形成过程、晶体结构、烧结体的微观结构及热膨胀性能进行了表征.用直流四端子法测试材料在500~800℃范围内的电导率.结果表明,制备样品的主晶相为正交钙钛矿结构,体系含有杂相;电导率随温度和Cu含量的变化关系表现为,x≤0.2时的样品随温度升高电导率降低,x≥0.3时随温度升高电导率增大,组成为x=0.2的样品电导率最高,500℃达到703.1 S·cm-1.材料的热膨胀系数随掺杂的Cu含量增加而降低.  相似文献   

6.
采用空气中固相反应烧结法制备了一系列钙钛矿结构的(La1-xREx)2/3Sr1/3MnO3(RE=Y,Sm,Eu,Tb;x=0.1~0.5)稀土锰氧化物多晶样品.X射线衍射(XRD)分析表明掺杂RE部分替代La以后,样品的晶体结构为正交结构,空间群为Pbmm.在室温(300K)和液氮温度(77K)下分别测试了样品的磁性质,发现磁性质的改变与RE的掺入量以及RE的离子半径有关.在掺Tb的样品中明显存在巨磁电阻效应,磁场为2 T,温度为300和77 K分别测得(La0.6Tb0.4)2/3Sr1/3MnO3和(La0.7Tb0.3)2/3Sr1/3MnO3的磁电阻(MR)为80%和85%.随着Tb掺杂量的增加,在不同的磁场下,样品电阻-温度关系曲线的峰均向高温方向移动.  相似文献   

7.
采用共压-共烧结的方法制备以NiO-La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O2-δ复合阳极为支撑,以Ce0.8Gd0.2O2-δ(GDC)为电解质,以La0.8Sr0.2Co0.8Fe0.2O3-δ (LSCF)-Ce0.8Gd0.2O2-δ(GDC)为复合阴极的单电池,在 400~650 ℃范围内,以干甲烷为燃料气,氧气为氧化气,测试了单电池的性能.用SEM对单电池进行微观结构分析,并对电池在650 ℃进行了6 h的稳定性测试,结果表明,该电池在6 h的测试过程中功率有较大的衰减,单电池在650 ℃时得到电流密度和功率流密度分别为为258.26 mA/cm2,为51.31 mW/cm2.  相似文献   

8.
Pr0.6-xNdxCa0.4FeO3-δ体系复合氧化物的Pechini法合成与表征   总被引:1,自引:0,他引:1  
采用Pechini法合成了Pr0.6-xNdxCa0.4FeO3-δ(x=0.0,0.2,0.3,0.4,0.5,0.6)系列复合氧化物粉体,用FT-IR,BET,XRD,TG-DTA,SEM等对产物形成过程及微结构进行了表征。结果表明,所合成的系列产物平均粒径均小于100nm,粉体烧结活性高,1200℃下烧结2 h样品的相对密度达到95%。所有产物在900℃下煅烧2 h即形成正交钙钛矿结构的单相固溶体;A位双稀土元素的存在对产物的晶型无影响。随着样品Pr/Nd比例的减小(x值增大),XRD衍射峰宽度有增大的趋势。采用直流四端子法测量了烧结体在中温(450~800℃)区的电导率,A位双稀土样品的电导率优于单一稀土样品,Pr0.1-Nd0.5Ca0.4FeO3-δ样品的电导率最高。  相似文献   

9.
采用溶胶-凝胶法合成(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00、0.02、0.05、0.10)氧化物, 通过X射线衍射(XRD)、场发射扫描电镜(FESEM)等手段对氧化物进行结构表征, 交流阻抗谱测试电性能. 结果表明: 所有样品均为单一萤石立方结构; 少量MoO3的加入提高了材料的致密性, 降低了材料的总电阻、晶界电阻和晶界电阻在总电阻中所占比例, 提高了材料的电导率. 1200 ℃烧结样品24 h, 测试温度700 ℃时, (Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00)总电导率和晶界电导率分别为0.05和0.19 S·m-1, 掺Mo材料(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.02)的总电导率和晶界电导率分别为2.42 和3.96 S·m-1.  相似文献   

10.
Ba0.4Sr0.6Ci1-xFexO3-δ系阴极材料的制备和表征   总被引:1,自引:0,他引:1  
采用甘氨酸.硝酸盐(GNP)法合成了中温固体氧化物燃料电池阴极材料Ba0.4Sr0.6Co1-xFexO3-δ=0.0~0.8)系列粉体.利用XRD和SEM对材料的结构和微观形貌进行分析,用直流四端子法测量了烧结陶瓷体在中温(450~800℃)范围内的电导率.结果表明.制备的样品为单一钙钛矿相,随着Fe含量增加,XRD衍射峰值向高角度方向稍有偏移.电导率随着温度及Fe含量的变化出现极大值,在x<0.2时,Ba0.4Sr0.6Co1-xFexO3-δ系列烧结体在 (450~800℃)XE的电导率,随Fe掺入量的增大而增大,x=0.2样品的电导率最高,800℃时达244.7 S·cm-1,远超过文献报道值,进一步增大Fe含量导电性能变差.  相似文献   

11.
采用柠檬酸盐法合成出La0.6Sr0.4Co0.8Fe0.2O3钙钛矿复合氧化物超细粉料,考查了各种影响溶胶与凝胶的形成以及合成粉料晶体结构与颗粒形态的因素,并确定了最佳的合成条件。研究了烧成温度对La0.6Sr0.4Co0.8Fe0.2O3电导率的影响,发现1200℃是最合适的烧成温度。研究结果表明,在室温~900℃范围内,样品的电导率在600℃附近出现峰值(~103S·cm-1),在低温段样品的导电行为符合小极化子导电机制,不同烧成温度的样品的导电活化能基本一致(5.31~5.79kJ·mol-1)。与常规固相合成法相比,柠檬酸盐法合成的La0.6Sr0.4Co0.8Fe0.2O3具有更高的烧结活性和电导率。  相似文献   

12.
采用柠檬酸盐法结合高温烧结制备了(Pr,Sr)(Al,Co)O3-δ系列钙钛矿氧化物导电陶瓷。使用X射线衍射(XRD)、扫描电镜(SEM)和直流四线法等手段对样品的物相、微观结构和电性能进行了表征。结果表明:所制备的Pr0.9Sr0.1Al1-yCoyO3-δ(y=0.1~0.5)陶瓷均为单相菱方钙钛矿结构,在掺杂范围内其晶胞体积、相对密度和电导率都随Co掺杂量y的增加而增大,但电导率的增幅在逐步减小;所有陶瓷样品在空气中都是氧离子与电子空穴的混合导体,电导行为符合小极化子跳跃机制。对于Pr1-xSrxAl0.5Co0.5O3-δ(x=0.1~0.4)陶瓷,当x=0.2时样品有较明显的第二相(Pr,Sr)CoO3析出,说明Sr在该体系的固溶限在10~20at%之间,而且随着x的进一步增加,(Pr,Sr)CoO3增多并成为主相;在测量温度范围内,Pr1-xSrxAl0.5Co0.5O3-δ的电导率随x的增加大体呈现出一个先增大后减小的变化趋势,在x=0.3附近达到一个最大值,当x≥0.2时还可观察到明显的半导体-金属性转变,且转变温度随x的增加而逐渐降低。  相似文献   

13.
采用有机凝胶法结合固相烧结技术制备了Sm0.9Sr0.1Al0.5Mn0.5O3-δ (SSAM9155)新型导电陶瓷. 通过TG/DTA, FTIR, XRD, SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制. 结果表明, 凝胶前驱体在900 ℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体; 高温烧结制得的SSAM9155陶瓷的电导率取决于p型电导, 电导率随温度的升高而增大, 导电行为符合p型小极化子跳跃机制; 随烧结温度的升高或保温时间的延长, SSAM9155陶瓷的电导率和相对密度都先增大后减小, 1600 ℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%), 该样品在空气和氢气气氛中850 ℃时的电导率分别为8.21和1.26 S•cm-1, 表观活化能分别为0.265和0.465 eV. 具有较高电导率的Sr, Mn掺杂的SmAlO3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   

14.
采用溶胶-凝胶方法合成了系列新型氧化物Ce5.2RE0.8MoO15-δ(RE=Ce, Y, La, Sm, Gd, Dy, Ho, Er). 通过XRD, Raman和XPS等手段对氧化物的结构进行了表征, 采用交流阻抗谱测试其导电性能. 研究结果表明, RE3+的掺杂可增加氧离子的空位浓度, 改善母体电导率, 晶胞参数随RE3+半径的增大而增大. 掺杂离子Dy3+的半径(0.0908 nm) 与母体基质离子Ce4+的半径(0.0920 nm) 相近, 形成的掺杂氧化物晶格弹性应变最小, RE3+与氧空位间的缔合焓(ΔHA)最小, 因而氧化物Ce5.2Dy0.8MoO15-δ具有相对较高的电导率(7.02×10-3 S/cm)和较低的激活能(1.056 eV).  相似文献   

15.
采用改进的溶胶-凝胶法合成固体氧化物燃料电池阴极系粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(PSCF)(z=0,0.02,0.05,0.1)。使用X射线衍射(XRD)、扫描电子显微镜(SEM)对其相结构与形貌进行了分析,结果表明:900℃以上焙烧后的阴极粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(z=0,0.02,0.05,0.1)为单一的钙钛矿结构。1000℃烧结的样品内粒子分布比较均匀,且颗粒内部存在一定程度的空隙,并与电解质附着情况良好。用直流四电极法测试阴极体系样品在400~750℃的电导率,发现各试样混合离子电子电导率均高于786 S.cm-1,能够满足固体氧化物燃料电池对阴极电导率的要求。用交流阻抗法测定PSCF-Ce0.8Sm0.2O1.9体系样品的阻抗谱,得到1000℃烧结的阴极体系对称电池在测试温度为750℃z=0,z=0.02,z=0.05时的极化电阻分别为0.041,0.040,0.034Ω.cm-2。  相似文献   

16.
中温复合固体电解质SDC-LSGM的制备和性能   总被引:2,自引:1,他引:1  
采用甘氨酸-硝酸盐法分别制备了Ce0.85Sm0.15O2-δ(SDC)与La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)两种电解质材料, 并用固相混合法将两种材料按不同质量比(SDC与LSGM的质量比分别为9∶1, 8∶2, 5∶5)混合制备复合电解质材料. 采用交流阻抗技术对样品的电学性能进行研究. 实验结果表明, SDC与LSGM的质量比为9∶1(SL91)时, 样品具有较高的电导率, 在350—800 ℃温度范围内其电导率均比SDC的高. 以复合电解质为支撑体, 以Sm0.5Sr0.5CoO3 为阴极、NiO/SDC 为阳极制成单电池, 测试结果显示, 在800 ℃时以SL91为电解质的单电池的最大输出功率密度为0.25 W/cm2, 最大电流密度为1.06 A/cm2. 在电池的工作温度区间(600—800 ℃)内以复合材料为电解质的单电池的开路电压比以SDC为电解质的高.  相似文献   

17.
采用柠檬酸-溶胶凝胶法制得钙钛矿型复合氧化物La0.8Ce0.2Mn1-xCuxO3(x=0.2,0.3,0.4),La0.8Sr0.2Mn0.6Cu0.4O3,La0.8Ce0.1Sr0.1Mn0.6 Cu0.4 O3,并采用X射线衍射(XRD)、扫描电镜(SEM)、比表面积(BET)、X射线光电子能谱(XPS)对其进行表征,测试了复合氧化物对CO+NO的催化活性。结果表明:La0.8Ce0.1Sr0.1Mn0.6Cu0.4O3催化活性最好,150℃时CO转化率91.8%,300℃时NO转化率100%;对于La0.8Ce0.2Mn1-xCuxO3(x=0.2,0.3,0.4),比表面积和颗粒的大小及分散度是影响催化活性的主要因素;对于La0.8Ce0.2Mn0.6Cu0.4O3,La0.8 Sr0.2 Mn0.6 Cu0.4 O3,La0.8 Ce0.1 Sr0.1 Mn0.6 Cu0.4 O3,催化剂的组成是影响催化活性的关键因素。  相似文献   

18.
王亚楠  周和平 《无机化学学报》2008,24(10):1558-1563
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT.SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0-0.5)和Gd.0.8Sr0.2Co1-yFeyO3-δ(y=0-1),所合成的初始粉体在800℃下煅烧12 h后均形成了钙钛矿结构的单相固溶体.研究发现,Gd1-xSrxCoO3-δ(GSC)的电导率在600℃时达到了559 S·cm-1,由Ce0.8Cd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm2和0.064Ω·cm2,活化能仅为87.8 kJ·mol-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3 离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Cd0.8Sr0.2CoO3-δ/GDC复合阴极材料.  相似文献   

19.
La0.8Sr0.2Ga0.8Mg0.2O2.8的电化学性质及其在SOFC中的应用   总被引:3,自引:0,他引:3  
采用凝胶浇注法制备具有较高氧离子电导率的固体电解质La0.8Sr0.2Ga0.8Mg0.2O2.8粉料.X射线衍射结果表明,于1400℃焙烧后即形成了钙钛矿结构,无杂相存在.探讨了粉料压制坯体的致密化和导电性能在1450℃下与烧结时间的关系,发现烧结时间为18h时其相对密度达98.3%,而在24h的情况下,样品具有最佳的氧离子导电性.采用Ni-Ce0.8Gd0.2O1.9作为阳极,La0.8Sr0.2Ga0.6Ni0.4O2.7作为阴极,组装了平板型固体氧化物燃料电池(SOFC).阳极和阴极分别通入含3%H2O的氢气和空气,750℃时的开路电压为1.04V,最大输出功率密度(P)达252mW/cm2(U=0.48V,J=525mA/cm2).  相似文献   

20.
用固相反应法制备了La0.7-xSm,Sr0.3MnO3,La0.7-x,GdxSr0.3MnO3和La0.7-xDyxSr0.3MnO3(x=0.00,0.10,0.20,0.30)系列样品.通过M-T'曲线,ρ-T曲线,研究了用稀土离子代换La对La0.7Sr0.3MnO3磁电性质和磁电阻的影响.结果表明:稀土离子代换La引起的晶格畸变和稀土离子的额外磁性对钙钛矿锰氧化物的磁电性质影响很大;稀土离子代换La是改变钙钛矿锰氧化物居里温度和增强MR的有效途径;适量稀土离子代换La可以在室温附近产生大的磁电阻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号