首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.  相似文献   

2.
In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus (“cusp trap”) which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.  相似文献   

3.
Recent advances in high resolution laser spectroscopy of atomic hydrogen are reviewed. Two-photon spectroscopy of the 1S–2S transition in a cold atomic beam has reached a resolution of better than 1 part in 1011. This narrow resonance has already led to order-of-magnitude advances in precision measurements of the Rydberg constant, the 1S ground state Lamb shift, and the hydrogen deuterium isotope shift. A precise spectroscopic comparison of hydrogen and antihydrogen could provide stringent tests of basic symmetry laws. Possible scenarios for ultrahigh resolution laser spectroscopy of antihydrogen are discussed.  相似文献   

4.
We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.  相似文献   

5.
The gravitational force on antimatter has never been directly measured. A method is suggested for making this measurement by directing a low-energy beam of neutral antihydrogen atoms through a transmission-grating interferometer and measuring the gravitationally-induced phase shift in the interference pattern. A 1% measurement of the acceleration due to the Earth's gravitational field (¯ g) should be possible from a beam of about 105 or 106 atoms. If more antihydrogen can be made, a much more precise measurement of¯ g would be possible. A method is suggested for producing an antihydrogen beam appropriate for this experiment.  相似文献   

6.
The development of a high density cryogenic pure positron plasma trap at the LLNL positron beam facility opens new possibilities for antihydrogen research. We discuss a planned measurement of the three-body collisional recombination rate in magnetized plasmas, a possible antihydrogen atomic beam experiment, and other applications of pure positron plasmas.  相似文献   

7.
Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.  相似文献   

8.
A beam of relativistic antihydrogen atoms — the bound state ( e+) — can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e+e pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 3Z 2 pb for antiproton momenta about 6 GeV/c. A sample of 600 antihydrogen atoms in a low-emittance, neutral beam will be made in 1995 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few-104 atoms can be used to measure the antihydrogen Lamb shift to 1 %. Work supported in part by Department of Energy contract DE-AC03-76SF00515 (SLAC). Work supported by Fondo Nacional de Investigación Científica y Tecnológica, Chile.  相似文献   

9.
The AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is an international collaboration, based at CERN, with the experimental goal of performing the first direct measurement of the Earth’s gravitational acceleration on antihydrogen. In the first phase of the experiment, a gravity measurement with 1% precision will be performed by passing a beam of ultra cold antihydrogen atoms through a classical Moiré deflectometer coupled to a position sensitive detector. The key requirements for this measurement are the production of ultra cold (T~100?mK) Rydberg state antihydrogen and the subsequent Stark acceleration of these atoms. The aim is to produce Rydberg state antihydrogen by means of the charge exchange reaction between ultra cold antiprotons (T~100?mK) and Rydberg state positronium. This paper will present details of the developments necessary for the successful production of the ultra cold antihydrogen beam, with emphasis on the detector that is required for the development of these techniques. Issues covered will include the detection of antihydrogen production and temperature, as well as detection of the effects of Stark acceleration.  相似文献   

10.
The production of antihydrogen by merging beams of antiprotons and positrons is described. Both beams, kept in storage devices, are continuously recirculated. Antihydrogen is formed by radiative recombination of positrons and antiprotons. Production rates of a few thousand per second are expected. The semi-relativistic atomic beam of antihydrogen would have a divergence of less than 1 mrad and a beam diameter of a few millimeter. The possibilities to increase these rates by induced recomtination are discussed. The scheme of antihydrogen production in overlapping beams is compared to other approaches.  相似文献   

11.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

12.
A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.  相似文献   

13.
The aim of the ASACUSA-CUSP experiment at CERN is to produce a cold, polarised antihydrogen beam and perform a high precision measurement of the ground-state hyperfine transition frequency of the antihydrogen atom and compare it with that of the hydrogen atom using the same spectroscopic beam line. Towards this goal a significant step was successfully accomplished: synthesised antihydrogen atoms have been produced in a CUSP magnetic configuration and detected at the end of our spectrometer beam line in 2012 [1]. During a long shut down at CERN the ASACUSA-CUSP experiment had been renewed by introducing a new double-CUSP magnetic configuration and a new semi-cylindrical tracking detector (AMT) [2], and by improving the transport feature of low energy antiproton beams. The new tracking detector monitors the antihydrogen synthesis during the mixing cycle of antiprotons and positrons. In this work the latest results and improvements of the antihydrogen synthesis will be presented including highlights from the last beam time.  相似文献   

14.
The performance of proposed antihydrogen spectroscopy or gravity experiments will crucially depend on the temperature of the initial antihydrogen sample. Measurements by ATRAP and ATHENA have shown that antihydrogen produced with the nested-trap technique is much hotter than the temperature of the surrounding trap. Therefore, novel schemes for antihydrogen recombination as well as for the pre-cooling of antiprotons are being considered. We are investigating a possible antiproton cooling technique based on the laser cooling of negative osmium ions. If demonstrated to be successful, it will allow the sympathetic cooling of antiprotons—or any negatively charged particles—to microkelvin temperatures. As a first milestone toward the laser cooling of negative ions, we have performed collinear laser spectroscopy on negative osmium and determined the transition frequency and the cross-section of the relevant bound–bound electric-dipole transition.  相似文献   

15.
The ASACUSA collaboration at CERN-AD has recently submitted a proposal to measure the hyperfine splitting of the ground state of antihydrogen in an atomic beam line. The spectrometer will consist of two sextupoles for spin selection and analysis, and a microwave cavity to flip the spin of the antihydrogen atoms. Numerical simulations show that such an experiment is feasible if ~200 antihydrogen atoms per second can be produced in the ground state, and that an accuracy of better than 10–7 can be reached. This measurement will be a precise test of the CPT invariance. B. Juhász serves as one of the authors of this article on behalf of the ASACUSA collaboration.  相似文献   

16.
The goal of the ALPHA experiment is the production, trapping and spectroscopy of antihydrogen. A direct comparison of the ground state hyperfine spectra in hydrogen and antihydrogen has the potential to be a high-precision test of CPT symmetry. We present a novel method for measuring the strength of a microwave field for hyperfine spectroscopy in a Penning trap. This method incorporates a non-destructive plasma diagnostic system based on electrostatic modes within an electron plasma. We also show how this technique can be used to measure the cyclotron resonance of the electron plasma, which can potentially serve as a non-destructive measurement of plasma temperature.  相似文献   

17.
Possibilities for trapping and cooling antihydrogen atoms for spectroscopy and gravitational measurements are discussed. A measurement of the gravitational force on antihydrogen seems feasible if antihydrogen can be cooled to of order 1 milli-Kelvin. Difficulties in obtaining this low energy are discussed in the hope of stimulating required experimental and theoretical studies.  相似文献   

18.
The ASACUSA collaboration at the Antiproton Decelerator at CERN is planning to measure the hyperfine splitting of the ground state of antihydrogen using an atomic beam line. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. The planned experimental method and setup, including the radiofrequency resonance cavity, are described, and results of Monte Carlo simulations are shown. These simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10???7.  相似文献   

19.
The production of antihydrogen via positron-antiproton radiative capture can be enhanced considerably by the process of stimulated photon emission. The gained yield of antihydrogen due to this process is evaluated for experimental conditions, where a positron beam is merged with antiprotons circulating in a storage ring, and the overlap area of both beams is illuminated with intense laser light. The scaling characteristics of the laser-induced gain are pointed out, considering the influence of particle and laser beam properties, as well as competing processes like reionization and free-free transitions. A gain factor of at least an order of magnitude seems achievable by stimulating positron capture, either into high-lying bound states using CO2 laser light or into then=2 state by means of a pulsed dye laser.  相似文献   

20.
Our group “ASACUSA MUSASHI” has established an efficient way for accumulating antiprotons and extracting them as intense ultra-slow mono-energetic beams at the CERN-AD facility. This novel beam opens new frontiers for investigating a variety of physics. For realizing H? spectroscopy and the test for charge-parity-time symmetry, we have also developed the cusp trap, a combination of an anti-Helmholz superconducting coil and a multi-ring electrode trap, for trapping both antiprotons and positrons and then synthesizing antihydrogens. Recently, the cusp trap was practically used to accumulate antiprotons. The last piece for synthesizing antihydrogens in the cusp trap is the positron accumulator. We have developed a compact system to effectively accumulate positrons based on N2 gas-buffer scheme with a specially designed high precision cylindrical multi-ring electrode trap. The recent progress of the developing work is an important milestone for upcoming antihydrogen science of ASACUSA MUSASHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号