首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[structure: see text] A flipping motion rapidly inverts the bent structure of uranyl-salophen compounds and, consequently, causes fast enantiomerization of nonsymmetrically substituted derivatives. This process has been previously slowed by introducing bulky substituents in the imine bond region. Since the resulting complexes dissociate upon chromatographic treatment, an alternative approach to the design and synthesis of robust, nonflipping uranyl-salophen compounds is here described. Such an approach is based on the idea that the flipping motion would be blocked by connecting the para positions with respect to the phenoxide oxygens by means of polymethylene bridges of suitable length. Analysis of a number of uranyl-salophen compounds by molecular mechanics, while showing that bulky substituents in the imine bond region cause severe distortions of the ligand backbone, suggested that the best chain lengths are those that fit the gap between the phenoxide rings without altering the natural geometry of the parent uranyl-salophen compound. Calculations showed that such chains are those composed of 12 and 13 methylene units. Accordingly, chiral uranyl-salophen macrocycles bridged with 12- and 13-methylene chains were synthesized in fairly good yields and resolved by chiral HPLC.  相似文献   

2.
The bicorannulenyl molecule is composed of two chiral bowls tethered by a single bond in a helical fashion. This simple combination of two chiral motifs gives rise to rich dynamic stereochemistry, where 12 conformers interconvert through bowl inversions and central bond rotation, and enantiomerizations occur via multistep processes. Interestingly, 8 out of 10 transition states are chiral, giving rise to mostly chiral enantiomerization pathways, where the molecule changes chirality without passing through an achiral conformation. However, analysis of the stereochemical landscape by DFT calculations and variable temperature NMR spectroscopy reveals that the energetically most favorable enantiomerization pathway passes through one of the two achiral transition states. Single-crystal X-ray diffraction corroborates the DFT results and provides information on packing modes of bicorannulenyl molecules in the solid state that have not been seen previously for other buckybowls.  相似文献   

3.
Enantiomerization of octahedral tris(α‐diimine)–transition metal complexes was investigated by enantioselective dynamic MEKC. Varying both the transition metal ion (Fe2+, Fe3+, and Ni2+) and the bidentate diimine ligand (1,10‐phenanthroline and 2,2′‐bipyridyl), the enantiomer separations were performed either in a 100 mM sodium tetraborate buffer (pH 9.3) or in a 100 mM sodium tetraborate/sodium dihydrogenphosphate buffer (pH 8.0) both containing sodium cholate as chiral surfactant. The unified equation of dynamic chromatography was employed to determine apparent reaction rate constants from the electropherograms showing distinct plateau formation. Apparent activation parameters ΔH? and ΔS? were calculated from temperature‐dependent measurements between 10.0 and 35.0°C in 2.5 K steps. It was found that the nature of the central metal ion and the ligand strongly influence the enantiomerization barrier. Surprisingly, complexes containing the 2,2′‐bipyridyl ligand show highly negative activation entropies between ?103 and ?116 J (K mol)?1 while the activation entropy of tris(1,10‐phenanthroline) complexes is positive indicating a different mechanism of interconversion. Furthermore, it was found that the Ni2+ complexes are stereostable under the conditions investigated here making them a lucent target as enantioselective catalysts.  相似文献   

4.
A chiral tripod-terpyridine ligand is known to coordinate with Ag+. These complexes self-assemble into chiral aggregates at room temperature. Molecular dynamic simulation reveals the cooperation of tripodal ligand structures with Ag(I) cations, which leads to the formation of helical aggregations, thus the chirality.  相似文献   

5.
A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen‐bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature‐ and solvent‐dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI‐MS measurements, as well as UV‐VIS and circular dichroism spectroscopy. The chiral self‐organized ligands were evaluated in the rhodium‐catalyzed asymmetric hydrogenation of α‐dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers.  相似文献   

6.
A theoretical study of the enantiomerization pathway of BINAP, the paradigm of atropochiral ligands in asymmetric organometallic catalysis, is reported. Density functional theory was used with the B3PW91 functional and the 6‐31G(d,p) basis set. The calculation level was validated through the study of the syn and anti enantiomerization pathways of the 1,1′‐binaphthyl reference for which the enantiomerization barrier was calculated to be in good agreement with experimental data. Calculations were then performed on BINAP itself using the same level of theory, and showed that its enantiomerization mechanism follows the syn route through a concerted, yet highly asynchronous, all‐chiral process. The enantiomerization barrier was computed at 213 kJ mol?1 and proved little sensitive to the functional or to the basis set used, with values always larger than 200 kJ mol?1. The configurational stability of BINAP was finally characterized by a computed Oki’s racemization temperature of 491 °C.  相似文献   

7.
An inherently chiral calix[6]arene possessing a C2-symmetric A-B-H substitution pattern was synthesized via a two step process starting from the parent hexa-t-butylcalix[6]arene. The racemic, inherently chiral compound exists as a single isomer with the 1,4-alternate conformation. The inherent chirality was confirmed by treatment of the racemic compound with Pirkle’s reagent to form diastereomeric complexes in solution.  相似文献   

8.
Helicenes and heterohelicenes are attractive compounds with great potential in materials sciences to be used in optoelectronics as ligand backbones in enantioselective catalysis and as chiral sensors. The properties of these materials are related to the stereodynamics of these helical chiral compounds. However, little is known about features controlling stereodynamics in helicenes; in particular, for heterohelicenes the position of the heteroatom could be relevant in this respect. Herein the complete stereodynamic characterization of monoaza[5]helicenes is shown by enantioselective dynamic HPLC and DFT calculations. At variance with previous theoretical calculations, 1‐aza[5]helicene shows a surprisingly high enantiomerization barrier, which is triggered by specific solvent interactions.  相似文献   

9.
Trapp O 《Electrophoresis》2006,27(15):2999-3006
An analytical solution for the unified equation for degenerated (pseudo-) first-order reactions, e.g., enantiomerization processes, in dynamic CE is presented, and validated with a dataset of 31 250 elution profiles covering typical experimental parameters. The unified equation was applied to determine the enantiomerization barrier of the hypnotic glutarimide derivative thalidomide (Contergan(R)) by dynamic capillary electrokinetic chromatography (DEKC). The enantiomer separation of thalidomide was performed in an aqueous 50 mM sodium borate buffer at pH 9.3 in the presence of the chiral mobile phase additive carboxymethyl-beta-CD. Interconversion profiles featuring pronounced plateau formation were observed. Activation parameters DeltaH( not equal) and DeltaS( not equal) were obtained from temperature-dependent measurements between 20.0 and 37.5 degrees C in 2.5K steps. From the activation parameters the enantiomerization barrier of thalidomide at 37 degrees C under basic conditions were calculated to be DeltaG( not equal) = 93.2 kJ/mol. Comparison of the kinetic data with results obtained at pH 8.0 reveals the catalytic influence of the base on the enantiomerization barrier.  相似文献   

10.
《Tetrahedron: Asymmetry》2001,12(10):1395-1398
The inherently chiral tetrabenzoxazine resorcarene derivative 1 shows characteristic plateau-formation during enantioselective HPLC separation on the chiral stationary phase Chiralpak AD. By computer assisted peak form analysis of the elution profiles, obtained from temperature dependent dynamic HPLC (DHPLC) experiments, with ChromWin, the enantiomerization barrier ΔG#(298 K)=92±2 kJ mol−1 and the activation parameters ΔH#=53.0±1.8 kJ mol−1 and ΔS#=−131±14 J (K mol)−1 were determined.  相似文献   

11.
Schoetz G  Trapp O  Schurig V 《Electrophoresis》2001,22(15):3185-3190
Enantioselective chromatographic methods, representing the most commonly used techniques for the determination of enantiomeric ratios, can also be used for the evaluation of stereochemical integrity. In the present study, dynamic capillary electrokinetic chromatography (DEKC) was employed to determine the enantiomerization barrier of thalidomide. In the presence of the chiral mobile phase additive carboxymethyl-beta-cyclodextrin, the interconverting enantiomers of thalidomide produced characteristic elution profiles exhibiting plateaus and/or peak broadening between 25 and 55 degrees C at pH 8. To obtain the enantiomerization barrier of thalidomide from experimental data, the fast and efficient simulation program ChromWin was used to simulate the experimental interconversion profiles and to obtain the apparent rate constants k1app(T). Additionally, these values were compared with the novel approximation function for the direct calculation of enantiomerization barriers from chromatographic parameters of elution profiles. From the rate constants k1app(T) of temperature-dependent measurements the kinetic activation parameters deltaG(T)#,deltaH#, and deltaS# of the enantiomerization of thalidomide were obtained. At 25 degrees C, the enantiomerization barrier deltaG# was determined to be 102 +/- 1 kJ/mol at pH 8 in the dynamic electrokinetic chromatographic experiment.  相似文献   

12.
Enantioselective stopped-flow multidimensional gas chromatography (stopped-flow MDGC) is a fast and simple technique to determine enantiomerization (inversion) barriers in the gas phase in a range of delta G#gas(T)=70-200 kJ mol(-1). After complete gas-chromatographic separation of the enantiomers in the first column, gas phase enantiomerization of the heart-cut fraction of one single enantiomer is performed in the second (reactor) column at increased temperature and afterwards this fraction is separated into the enantiomers in the third column. From the observed de novo enantiomeric peak areas a(j), the enantiomerization time t and the enantiomerization temperature T, the enantiomerization (inversion) barrier delta G#gas(T) is determined and from temperature-dependent experiments, the activation enthalpy delta H#gas and the activation entropy delta S#gas are obtained. Enantiomerization studies on chiral 1-chloro-2,2-dimethylaziridine by stopped-flow MDGC yielded activation parameters of nitrogen inversion in the gas phase, i.e., delta G#gas(353 K)=110.5+/-0.5 kJ mol(-1), delta H#gas=71.0+/-3.8 kJ mol(-1) and delta S#gas=-109+/-11 J mol(-1) K(-1). By the complementary method of dynamic gas chromatography (GC), the apparent enantiomerization (inversion) barrier of 1-chloro-2,2-dimethylaziridine in the gas-liquid biphase system was found delta G#app(353 K)=108 kJ mol(-1). The values obtained by stopped-flow MDGC in the gas phase were used to calculate the activation parameters of nitrogen inversion of 1-chloro-2,2-dimethylaziridine in the liquid phase in the presence of the chiral selector Chirasil-nickel(II), i.e.. deltaG#liq(353 K)=106.0+/-0.4 kJ mol(-1), delta H#liq=68.3+/-1.4 kJ mol(-1) and deltaS#liq=-106+/-3.0 J mol(-1) K(-1).  相似文献   

13.
The effect of stereochemistry on the cytotoxicity of highly active and hydrolytically stable N-methylated Ti(IV) salan complexes is reported. Four bis(isopropoxo) complexes incorporating N-methylated salan ligands with different aromatic substitution patterns have been prepared in racemic and optically active forms for the first time by ligand-to-metal chiral induction from trans-diaminocyclohexyl-based chiral ligands. The configuration of the metal center that derives from that of the ligand has an enormous influence on cytotoxicity, with the racemic mixture mostly being more active than the single enantiomers that are of either similar or different activity. This implies that the active species is a salan-bound heterochiral polynuclear compound, interacting with a chiral target. Four additional complexes of achiral salan and chiral labile sec-butoxo ligands, analyzed as racemic and as homochiral, revealed no influence of stereochemistry, supporting early dissociation of the labile ligands to give the polynuclear products.  相似文献   

14.
The 3-hydroxy group of one glucopyranosinic ring of γ-cyclodextrin was selectively substituted with an amino moiety to obtain a new compound able to complex copper(II). Indeed, the new ligand, an altro-γ-CD, forms stable complexes with Cu(II), as the analogous 3-amino derivative β-CD previously exploited for the chiral separation of some amino acids by ligand exchange mechanism in capillary electrophoresis. Furthermore, the ligand forms a stable inclusion complex with anthraquinone-2-sulfonate.  相似文献   

15.
A novel method of chiral ligand‐exchange CE was developed with L ‐amino acylamides as a chiral ligand and zinc(II) as a central ion. It has been demonstrated that these chiral complexes, such as Zn(II)‐L ‐alaninamide, Zn(II)‐L ‐prolinamide, and Zn(II)‐L ‐phenylalaninamide, are suitable for use as chiral selectors for the enantioseparation of either individual pair of or mixed dansyl amino acids. The optimal separation running buffer consisted of 5 mM ammonium acetate, 100 mM boric acid, 4 mM ZnSO4·7 H2O, and 8 mM L ‐amino acylamides at pH 8.2. The experiments showed that apart from the effect of the concentration of the complexes on the resolution and the migration time, the buffer pH also had a sharp influence on resolution. The employed chiral ligands exhibited different enantioselectivities and enantiomer migration orders. D ‐Amino acids migrate faster than L ‐amino acids when Zn(II)‐L ‐alaninamide and Zn(II)‐L ‐phenylalaninamide are used as chiral selectors, but it was observed that the migration order is reversed when Zn(II)‐L ‐prolinamide is used as the chiral selector. Furthermore, the amount of dansylated amino acids is found to be highly dependent on the labeling temperature.  相似文献   

16.
Lanthanide triflates and a series of hexadentate chiral ligand complexes were synthesized. X‐ray‐quality crystals were obtained from mixtures of the lanthanide complexes, which were helical in shape. The complexes showed Lewis acidity and catalyzed the enantioselective Diels–Alder reaction of electron‐rich siloxydienes. The complexes were stable enough to be stored at ambient temperature on a laboratory bench and retained their Lewis acidity even after a month.  相似文献   

17.
Dynamic resolution has been studied as a method for the asymmetric synthesis of 2-substituted pyrrolidines. Highly enantioselective electrophilic substitutions of racemic 2-lithiopyrrolidines in the presence of a chiral ligand have been achieved. The organolithium compounds were prepared by tin-lithium exchange from the corresponding tributylstannanes and n-butyllithium or by deprotonation of N-(tert-butyloxycarbonyl)pyrrolidine with sec-butyllithium. A range of N-substituents and chiral ligands were investigated for the dynamic resolution. Electrophilic quench of the resolved diastereomeric 2-lithiopyrrolidine-chiral ligand complexes provided the enantiomerically enriched 2-substituted pyrrolidines. With N-alkyl derivatives, the resolution occurs conveniently at (or just below) room temperature and either enantiomer of the product can be formed by appropriate choice of the chiral ligand. The asymmetric induction occurs as a result of a thermodynamic preference for one of the diastereomeric complexes. The minor complex was found to have a faster rate of reaction with the electrophile. The use of N-allylic derivatives provides a means to prepare the N-unsubstituted pyrrolidine products. Best results were obtained with the N-2,3-dimethylbut-2-enyl derivative, and this N-substituent could be cleaved using 1-chloroethyl chloroformate. With N-Boc-2-lithiopyrrolidine, the enantioselectivity arises by a kinetic resolution and high levels of asymmetric induction in the presence of excess n-butyllithium can be obtained. Dynamic kinetic resolution of the N-Boc derivative is limited in the scope of electrophile that can be used.  相似文献   

18.
A one-step procedure is developed to synthesize inherently chiral p-tert-butylcalix[4]azacrown 1 through etherification between p-tert-butylcalix[4]arene and compound 3, which can be amplified to efficiently prepare more inherently chiral calix[4]arenes in ABHH substitution pattern.  相似文献   

19.
The significance of the molecular chirality of drugs has been widely recognized due to the thalidomide tragedy. Most of the new drugs reaching the market today are single enantiomers, rather than racemic mixtures. However, many optically pure drugs, including thalidomide, undergo enantiomerization in vivo, thus negating the single enantiomers’ benefits or inducing unexpected effects. A detailed atomic level understanding of chiral conversion, which is still largely lacking, is thus critical for drug development. Herein, we use first‐principle density function theory (DFT) to explore the mechanism of enantiomerization of thalidomide. We have identified the two most plausible interconversion pathways for isolated thalidomide: 1) proton transfer from the chiral carbon center to an adjacent carbonyl oxygen atom, followed by isomerization and rotation of the glutarimide ring (before the proton hops back to the chiral carbon atom); and 2) a pathway that is the same as “1”, but with the isomerization of the glutarimide ring occurring ahead of the initial proton transfer reaction. There are two remarkable energy barriers, 73.29 and 23.59 kcal mol?1, corresponding to the proton transfer and the rotation of the glutarimide ring, respectively. Furthermore, we found that water effectively catalyzes the interconversion by facilitating the proton transfer with the highest energy barrier falling to approximately 30 kcal mol?1, which, to our knowledge, is the first time that this important role of water in chiral conversion has been demonstrated. Finally, we show that the hydroxide ion can further lower the enantiomerization energy barrier to approximately 24 kcal mol?1 by facilitating proton abstraction, which agrees well with recent experimental data under basic conditions. Our current findings highlight the importance of water and hydroxide ions in the enantiomerization of thalidomide and also provide new insights into the mechanism of enantiomerization at an atomic level.  相似文献   

20.
2H NMR spectra of perdeuterated tris(diimine)ruthenium(II) complexes have been recorded in lyotropic liquid crystalline phase formed by the chiral polypeptide, poly-gamma-benzyl-L-glutamate (PBLG) and co-solvents. It is demonstrated that the left- and right-rotation isomers of these octahedral metal complexes with D3 symmetry can be distinguished. The effects of temperature and ligand size on spectral resolution were also studied. Although in the case of free bipyridine ligands excellent optical resolution could be obtained at room temperature in the complexes studied, the increase in ligand size has a detrimental effect on the resolution. This can be compensated to some extent by elevating the sample temperature and decreasing the deuterium relaxation rates, but the available temperature range and therefore the applicability of the technique are limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号