首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monolayers of 1,1'-bi-2-naphthol (BN) derivatives, of which the two naphthalene rings are twisted along the carbon(1)-carbon(1') single bond, were studied for their conformational effect on the growth of pentacene crystals on their monolayer surface. BN monolayers with H and Br at 6,6'-positions (H-BN and Br-BN) were prepared by immersion-coating in toluene solution of the corresponding BNSiCl2. Pentacene was thermally evaporated onto the H-BN and Br-BN monolayers, silica, octadecylsilyl (ODTS) SAM, and a micropattern of H-BN and ODTS SAM. Pentacene crystals were also grown on the SAMs of 1-naphthylsilyl(NPh), phenylsilyl(Ph), and diphenylsilyl (DPh) groups, which are aromatic and have contact angle values similar to those of the the BN monolayers. AFM images of the crystals at the early stage of growth indicated that the BN monolayers suppressed the nucleation while facilitating the growth of nuclei to larger crystals. The low nucleation density and high growth rate are accounted for by the amorphous nature of the twisted BN monolayer surface where the intermolecular interaction between neighboring adsorbates is likely to be suppressed. The results offer new insights into designing surfaces for controlling the crystallization kinetics of organic materials.  相似文献   

2.
Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.  相似文献   

3.
Molecular ordering of pyrrolyl-terminated alkanethiol self-assembled monolayers (PyC(n)SH SAMs) on Au(111) substrates (n = 11 or 12) was investigated by scanning tunneling microscopy (STM) and various spectroscopic methods. The SAMs, which were in a disordered state when formed at room temperature, could be ordered either globally by thermal annealing at 70 degrees C, or locally via stimulation with repetitive STM scans. The ordered phase was characterized by small domains of molecular rows formed along 112[combining macron] directional set with an inter-row corrugation period close to 1.44 nm, in which defects were abundant. Based on the experimental results, the molecular arrangement in the ordered PyC(n)SH SAM was proposed to be a (5x radical3)rect structure with a molecular deficiency >or=10%. While mechanical interactions between molecules and scanning probe tips had been pointed out as the major cause of scan-induced phase transformations in other SAM systems, electronic or electrostatic factors were thought to affect considerably the scan-induced ordering process in this SAM system. From comparison of surface molecular coverage between disordered and thermally ordered SAMs of PyC(12)SH, it was inferred that the disorder could be ascribed to both kinetic and thermodynamic factors. The kinetic barrier to the ordered phase was supposed to result from strong dipole-dipole interactions among the pyrrolyl endgroups.  相似文献   

4.
We have studied the growth kinetics of self-assembled monolayers (SAMs) ofoctadecyltrimethylammonium bromide (C18TAB) on mica below the critical micelle concentration at 22, 30, 40, and 50 degrees C. A combination of atomic force microscopy, contact angle goniometry, and transmission infrared spectroscopy was used to follow the growth processes to determine the rates involved in the growth of a C18TAB SAM on mica. The growth of a SAM consisted of four distinct processes: deposition of adsorbate molecules, growth of a disordered 2D liquid phase, nucleation of islands of an ordered 2D solid phase, and subsequent growth of the solid phase. The rates of these various processes are determined, and the activation energies for several processes were calculated including those for the adsorption onto a bare substrate (20 kJ/mol), adsorption into the saturated liquid phase (100 kJ/mol), and nucleation of islands (0.3 kJ/mol). Despite the small activation barrier to island nucleation, the nucleation rate is qualitatively slow, suggesting that entropic effects dominate the nucleation rate.  相似文献   

5.
The effect of phase state of self-assembled monolayers (SAMs) on adhesion behavior was studied using a combination of atomic force microscopy (AFM) and Johnson-Kendall-Roberts (JKR) methods. The phase state of SAMs was controlled by adjusting the reaction temperature. Order-to-disorder structural transitions in monolayers of n-alkyltrichlorosilanes resulted in dramatic increases in adhesion force and adhesion hysteresis, which represents the first report of alterations in adhesion properties due to phase changes of monolayers without any effect of chain length and surface heterogeneity. This increase in mechanical deformation of the disordered monolayer is understood to be caused by increases in (1) molecular contact between the AFM tip and a disordered monolayer due to the more deformable state of the latter and (2) monolayer deformation during unloading by the JKR probe lens. Adhesion hysteresis was found to have greater sensitivity toward the unloading rate for disordered monolayers. The occurrence of maximum hysteresis at faster rates proves that monolayer chain mobility increases with structural disorder, resulting in increased mechanical deformation.  相似文献   

6.
The role of lateral interconnections between three-dimensional pentacene islands on low surface energy polyimide gate dielectrics was investigated by the measurement of the surface coverage dependence of the charge mobility and the use of conducting-probe atomic force microscopy (CP-AFM). From the correlation between the electrical characteristics and the morphological evolution of the three-dimensionally grown pentacene films-based field-effect transistors, we found that during film growth, the formation of interconnections between the three-dimensional pentacene islands that are isolated at the early stage contributes significantly to the enhancement process of charge mobility. The CP-AFM current mapping images of the pentacene films also indicate that the lateral interconnections play an important role in the formation of good electrical percolation pathways between the three-dimensional pentacene islands.  相似文献   

7.
We present a quantitative study of the nanoscale frictional properties of one-component (pure) and two-component (mixed) alkylsilane self-assembled monolayers (SAMs). The load and velocity dependence of the friction force was measured in air and ethanol using lateral force microscopy (LFM). It was observed that for SAMs with well-ordered structure (pure SAMs and mixed SAMs composed of two long chain molecules) friction depends nonlinearly on load, at low loads, both in air and in ethanol. These observations are consistent with the low-load contact area predictions of the Johnson-Kendall-Roberts (JKR) theory, indicating that for well-ordered SAMs friction force is proportional to contact area and that the true contact area is determined by elastic deformation of the SAM by the LFM probe. In ambient air, the magnitude of the friction force measured using mixed SAMs is found to be similar to that obtained using pure SAMs at the same external load. Changing the medium to ethanol, however, leads to dramatically lower friction in the mixed SAMs. An analysis of the friction data using a thermally activated Eyring model that takes into account the monolayer viscoelasticity suggests that the better friction properties of the mixed SAMs are a consequence of greater disorder and higher molecular mobility in the outer layer/canopy. These findings indicate that multi-tiered SAM coatings comprising a highly ordered underlayer and a disordered, mobile canopy can provide the basis for low-friction coatings for small mechanical systems.  相似文献   

8.
Pentacene films deposited on self-assembled monolayers (SAMs) bearing different terminal functional groups have been studied by reflection-absorption IR, grazing angle XRD, NEXAFS, AFM, and SEM analyses. A film with pentacene molecules nearly perpendicularly oriented was observed on Au surfaces covered with an SAM of alkanethiol derivative of X-(CH2)(n)-SH, with X = -CH(3), -COOH, -OH, -CN, -NH(2), C(60), or an aromatic thiol p-terphenylmethanethiol. On the other hand, a film with the pentacene molecular plane nearly parallel to the substrate surface was found on bare Au surface. A similar molecular orientation was found in thinner ( approximately 5 nm) and thicker (100 nm) deposited films. Films deposited on different surfaces exhibit distinct morphologies: with apparently smaller and rod-shaped grains on clean bare Au surface but larger and islandlike crystals on SAM-modified surfaces. X-ray photoemission electron microscopy (X-PEEM) was used to analyze the orientation of pentacene molecules deposited on a SAM-patterned Au surface. With the micro-NEXAFS spectra and PEEM image analysis, the microarea-selective orientation control on Au was characterized. The ability to control the packing orientation in organic molecular crystals is of great interest in fabricating organic field effect transistors because of the anisotropic nature of charge transport in organic semiconducting materials.  相似文献   

9.
Self-assembled monolayers (SAMs) of alkanephosphonic acids with chain lengths between 8 and 18 carbon units were formed on thin films of indium tin oxide (ITO) sputter-deposited on silicon substrates with 400 nm thermally grown SiO(2). The silicon substrates, while not intended for use in near-IR or visible optics applications, do provide smooth surfaces that permit systematic engineering of grain size and surface roughness as a function of the sputter pressure. Argon sputter pressures from 4 to 20 mTorr show systematic changes in surface morphology ranging from smooth, micrometer-sized grain structures to <50 nm grains with 3× higher surface roughness. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments are conducted for alkanephosphonic acids deposited on these wide range of ITO surfaces to evaluate the effects of these morphological features on monolayer ordering. Results indicate that long-chain SAMs are more highly ordered, and have a smaller tilt angle, than short-chain SAMs. Surprisingly, the 1-octadecyl phosphonic acids maintain their order as the lateral grain dimensions of the ITO surface shrink to ~50 nm. It is only when the ITO surface roughness becomes greater than the SAM chain length (~15 ?) that SAMs are observed to become relatively disordered.  相似文献   

10.
Using X-ray diffraction-based pole figures, we present quantitative analysis of the microstructure of poly(3-hexylthiophene) thin films of varying thicknesses, which allows us to determine the crystallinity and microstructure at the semiconductor-dielectric interface. We find that the interface is approximately one fourth as crystalline as the bulk of the material. Furthermore, the use of a self-assembled monolayer (SAM) enhances the density of interface-nucleated crystallites by a factor of ∼20. Charge transport measurements as a function of film thickness correlate with interface crystallinity. Hence, we establish the crucial role of SAMs as nucleating agents for increasing carrier mobility in field-effect devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

11.
Organic thin-film transistors using pentacene as the semiconductor were fabricated on silicon. A series of phosphonate-based self-assembled monolayers (SAMs) was used as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Octadecylphosphonate, (quarterthiophene)phosphonate, and (9-anthracene)phosphonate SAMs were examined. Significant improvements in the sub-threshold slope and threshold voltage were observed for each SAM treatment as compared to control devices fabricated without the buffer. These improvements were related to structural motif relationships between the pentacene semiconductor and the SAM constituents. Measured transistor properties were consistent with a reduction in density of charge trapping states at the semiconductor-dielectric interface that was effected by introduction of the self-assembled monolayer.  相似文献   

12.
Self-assembled monolayers (SAMs) of polarized and nonpolarized organosilane molecules on gate insulators induced tunable threshold voltage shifting and current modulation in organic field-effect transistors (OFETs) made from solution-deposited 5,5'-bis(4-hexylphenyl)-2,2'-bithiophene (6PTTP6), defining depletion-mode and enhancement-mode operation. p-Channel inverters were made from pairs of OFETs with an enhancement-mode driver and a depletion-mode load to implement full-swing and high-gain organic logic circuits. The experimental results indicate that the shift of the transfer characteristics is governed by the built-in electric field of the SAM. The effect of surface functional groups affixed to the dielectric substrate on the grain appearance and film mobility is also determined.  相似文献   

13.
This paper reports on the structure and desorption dynamics of thin D2O ice overlayers (0.2-10 monolayers) deposited on serine- and serinephosphate- (with H+, Na+, Ca2+ counterions) terminated self-assembled monolayers (SAMs). The D2O ice overlayers are deposited on the SAMs at approximately 85 K in ultrahigh vacuum and characterized with infrared reflection absorption spectroscopy (IRAS). Reflection absorption (RA) spectra obtained at sub-monolayer D2O coverage reveal that surface modes, e.g. free dangling OD stretch, dominate on the serine SAM surface, whereas vibrational modes characteristic for bulk ice are more prominent on the serinephosphate SAMs. Temperature programmed desorption mass spectrometry (TPD-MS) and TPD-IRAS are subsequently used to investigate the energetics and the structural transitions occurring in the ice overlayer during temperature ramping. D2O ice (approximately 2.5 monolayers) on the serine SAMs undergoes a gradual change from an amorphous- to a crystalline-like phase upon increasing the substrate temperature. This transition is not as pronounced on the serine phosphate SAM most likely because of reduced mobility due to strong pinning to the surface. We show also that the energy of desorption for a sub-monolayer of D2O ice on serinephosphate SAM surfaces with a Na+ and Ca2+ counterions is equally high or even exceeds previously reported values for analogous high-energy SAMs.  相似文献   

14.
The neutral cluster beam deposition (NCBD) method has been applied to produce and characterize organic thin-film transistors (OTFTs) based upon tetracene and pentacene molecules as active layers. Organic thin films were prepared by the NCBD method on hexamethyldisilazane (HMDS)-untreated and -pretreated silicon dioxide (SiO2) substrates at room temperature. The surface morphology and structures for the tetracene and pentacene thin films were examined by atomic force microscopy (AFM) and X-ray diffraction (XRD). The measurements demonstrate that the weakly bound and highly directional neutral cluster beams are efficient in producing high-quality single-crystalline thin films with uniform, smooth surfaces and that SiO2 surface treatment with HMDS enhances the crystallinity of the pentacene thin-film phase. Tetracene- and pentacene-based OTFTs with the top-contact structure showed typical source-drain current modulation behavior with different gate voltages. Device parameters such as hole carrier mobility, current on/off ratio, threshold voltage, and subthreshold slope have been derived from the current-voltage characteristics together with the effects of surface treatment with HMDS. In particular, the high field-effect room-temperature mobilities for the HMDS-untreated OTFTs are found to be comparable to the most widely reported values for the respective untreated tetracene and pentacene thin-film transistors. The device performance strongly correlates with the surface morphology, and the structural properties of the organic thin films are discussed.  相似文献   

15.
The structural order and ordering conditions of the self-assembled monolayers (SAMs) of HSCH2CH2CH2O(EO)xCH3, where EO = CH2CH2O and x = 3-9, on polycrystalline gold (Au) were determined by reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry (SE), and electrochemical impedance spectroscopy. For x = 5-7, RAIRS and SE data show that the oligo(ethylene oxide) [OEO] segments adopt the near single phase, 7/2 helical conformation of the folded-chain crystal polymorph of crystalline poly(ethylene oxide), oriented normal to the substrate. These SAMs exhibit OEO segment structure and orientation identical to that found in a previous isostructural series [HS(CH2CH2O)6-8C18H37 SAMs. Vanderah, D. J., et al. Langmuir 2003, 19, 3752] and are anisotropic films for surface science metrology where structure is constant and thickness increases in 0.30 nm increments. In addition, this is the first example of OEO SAMs to attain this highly ordered, helical conformation where the (EO)x segment is separated from the Au-sulfur headgroup by a polymethylene chain. For x = 4, 8, and 9, the SAMs are largely helical but show evidence of nonhelical conformations and establish the upper and lower limits of the isostructural set. For x = 3, the SAMs are largely disordered containing some all-trans conformation. SAM order as a function of immersion time from 100% water and 95% ethanol indicates that the HSCH2CH2CH2O(EO)5-7CH3 SAMs order faster and under a wider range of conditions than omega-alkyl 1-thiaolio(ethylene oxide) [HS(EO)xCH3] SAMs, reported earlier (Vanderah, D. J., et al. Langmuir 2002, 18, 4674 and Vanderah, D. J., et al. Langmuir 2003, 19, 2612).  相似文献   

16.
We investigate the role of self-assembly monolayers in modulating the response of organic field-effect transistors. Alkanethiol monolayers of chain length n are self-assembled on the source and drain electrodes of pentacene field-effect transistors. The charge carrier mobility mu exhibits large fluctuations correlated with odd-even n. For n < 8, mu increases by 1 order of magnitude owing to the decrease of the hole injection barrier and the improved molecular order at the organic-metallic interface. For n > or = 8, mu decays exponentially with an inverse decay length beta = 0.6 A(-1). Our results show that (i) charge injection across the interface occurs by through-bond tunneling of holes mediated by the alkanethiol layer; (ii) in the long-chain regime, the charge injection across the alkanethiol monolayer completely governs the transistor response; (iii) the transistor is a sensitive gauge for probing charge transport across single monolayers. The odd-even effect is ascribed to the anisotropic coupling between the alkanethiol terminal sigma bond and the HOMO level of ordered pentacene molecules.  相似文献   

17.
The molecular structure of thin pentacene (C(22)H(14)) films grown on a Cu(110) surface has been studied by means of He atom scattering, low energy electron diffraction, thermal desorption spectroscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. Depending on the actual film thickness three different crystalline phases have been identified which reveal a characteristic reorientation of the molecular plane relative to the substrate surface. In the monolayer regime the molecules form a highly ordered commensurate (6.5x2) structure with a planar adsorption geometry. For thin multilayers (thickness <2 nm) a second phase is observed which is characterized by a lateral ((-0.65 5.69) ( 1.90 1.37)) structure and a tilting of the molecular plane of about 28 degrees around their long axis which remains parallel to the surface. Finally, when exceeding a thickness of about 2 nm subsequent growth proceeds with an upright molecular orientation and leads to the formation of crystalline films which are epitaxially oriented with respect to the substrate. The present study thus demonstrates that also on metal substrates highly ordered pentacene films with an upright orientation of the molecular planes can be grown. Photoelectron spectroscopy data indicate further that thick films do not grow in a layer-by-layer mode but reveal a significant degree of roughness.  相似文献   

18.
The advantage of "self-assembly" (strong covalent binding to substrates) was combined with the advantage of Langmuir-Blodgett (LB) or Langmuir-Schaefer (LS) transfer to a solid substrate (quantitative transfer of monolayers to the substrate). The electrical rectification (asymmetric conduction) by a monolayer of thioacetylalkylquinolinium tricyanoquinodimethanide was critically compared when these molecules had been transferred, by such competing techniques, onto gold electrodes, and then covered by a "cold gold" pad electrode. Unimolecular rectification was observed in the expected directions in the LB and LS monolayers. The Self-Assembled Monolayers (SAMs) were disordered; macroscopic measurements of rectification were unsuccessful for the SAMs, but successful for the down-stroke LB and LS monolayers, whose orientation and potential bonding to the Au surface should be identical to that of an ideal SAM.  相似文献   

19.
The morphology, structure, and transport properties of pentacene thin film transistors (TFTs) are reported showing the influence of the gate dielectric surface roughness. Upon roughening of the amorphous SiO2 gate dielectric prior to pentacene deposition, dramatic reductions in pentacene grain size and crystallinity were observed. The TFT performance of pentacene films deposited on roughened substrates showed reduced free carrier mobility, larger transport activation energies, and larger trap distribution widths. Spin coating roughened dielectrics with polystyrene produced surfaces with 2 A root-mean-square (rms) roughness. The pentacene films deposited on these coated surfaces had grain sizes, crystallinities, mobilities, and trap distributions that were comparable to the range of values observed for pentacene films deposited on thermally grown SiO2 (roughness also approximately 2 A rms).  相似文献   

20.
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号