首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The Re(CO)2(L)P2 complexes (L=N-methylsalicylideneiminate,N-phenylsalicylideneiminate, halfN,N-ethylenebis(salicylideneiminate) or 8-hydroxyquinolinate; P=dimethyl(phenyl)phosphine or triphenylphosphine) were synthesized from the ReCl(CO)3P2 complexes and characterized by elemental analysis, i.r. and1H n.m.r. spectroscopy.  相似文献   

2.
The synthesis and characterization of the novel hindered tripodal phosphine ligand P(CH(2)CH(2)CH(2)P(i)Pr(2))(3) (P(3)P(3)(iPr)) (1) are reported, along with the synthesis and characterization of ruthenium chloro and hydrido complexes of 1. Complexes [RuCl(P(3)P(3)(i)Pr)][BPh(4)] (2[BPh(4)]), RuH(2)(P(3)P(3)(i)Pr) (3), and [Ru(H(2))(H)(P(3)P(3)(iPr))][BPh(4)] (4[BPh(4)]) were characterized by crystallography. Complex 2 is fluxional in solution, and low-temperature NMR spectroscopy of the complex correlates well with two dynamic processes, an exchange between stereoisomers and a faster turnstile-type exchange within one of the stereoisomers.  相似文献   

3.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The DFT B3LYP method was used to optimize the geometries, calculate the IR spectra, and analyze the electronic structures of carbonyl(carboxylato)(phosphine)rhodium(I) complexes, namely, trans-[Rh(Cl)(CO)(PPh3)2], trans-[Rh(OCOR)(CO)(PPh3)2] (R = H, CH3, and CF3), and trans-[Rh(OCOH)(CO)(PX3)2], and free PX3 molecules (X = H, F, CH3, i-Pr, Cy, and Ph). A linear correlation between v(CO) in the IR spectra of trans-[Rh(OCOH)(CO)(PX3)2] and the HOMO energy of the free PX3 molecule was found for phosphines with nonaromatic substituents X. It was concluded that the electronic state of the CO group is mainly determined by the σ-donor properties of phosphines. The distinctive features of the electronic structure of triphenylphosphine are discussed.  相似文献   

5.
Summary The complex [Tc(PPh3)2(CO)3Cl] reacts with the lithium salt of amido-carboxylato- and thiazolato-derivatives to give the new complexes (Ar= C6H4Me-p or C6H4OMe-p), [Tc(PPh3)2(CO)2(amt1,2)] [amt1=anion of 2-(methylamino)thiazole; amt2=anion of 2-4-methoxyphenylamino(thiazole)] and [Tc(PPh3)2(CO)2- (R = Ph2CH, PhCH2 or CCl3). The compounds have been characterized by elemental analysis, and i.r. and1H n.m.r. spectra.  相似文献   

6.
7.
The heterometallic complex (CO)3(PPh3)Re(μ-SPr)Pt(PPh3)(CO) (I) was formed in the reaction of Re2(μ-SPr)2(CO)8 with (PPh3)2Pt(C2Ph2), together with (CO)3(PPh3)Re(μ-SPr)2Re(CO)4 (II), which was also prepared by an alternative synthesis. Compounds I and II were characterized by X-ray diffraction. In I, the Re-Pt single bond, 2.7414(5) Å, is supplemented by a thiolate bridge with shortened bonds: Pt-S (2.336(2) Å) and Re-S (2.449(2) Å). The Re-P (2.469(2) Å) and Pt-P (2.329(2) Å) bonds are also shortened. Complex II resulting from replacement of one CO group in the starting rhenium complex by triphenylphosphine has no M-M bond, and the Re-S and Re-P bond lengths (2.511(2)–2.527(2) and 2.517(3) Å) are close to the length of single bonds. It is assumed that the platinum atom in I is attached to the formally double bond Re ? SPr arising upon dissociation of Re2(μ-SPr)2(CO)8.  相似文献   

8.
Summary The compound [Re(CO)3(PPh3)2Cl] reacts with the lithium salt of thiazole derivatives (L1H = 2-amino-benzothiazole, L2H = 2–N-methyl-aminothiazole, L3H = 2–N-phenylaminothiazole, L4H = 2–N-(4-methoxyphenyl)aminothiazole, L5H = 2–N(4-nitrophenyl)aminothiazole) to give [Re(CO)2-(PPh3)2(L)]. The compounds have been characterized by elemental analysis, i.r. and1H n.m.r. spectra. At room temperature [Re(CO)2(PPh3)(L2)] reacts with L6H (L6H = diphenylacetic acid), to give the carboxylato complex [Re(CO)2 .The crystal structures of [Re(CO)2(PPh3)2(L2)] (2) and [Re(CO)2(PPh3)2(L6)] (6) were determined by x-ray crystallography. [Re(CO)2(PPh3)2(L2)] crystallizes in the monoclinic space group P21/m witha = 9.16(1),b= 24.82(2),c =9.12(1) Å, and = 115.81(4)°; Dc = 1.56 g cm–3for Z = 2.The structure was refined to a final R of 6.4%. The molecules have Cs symmetry. The rhenium atom is six-coordinate with approximately octahedral geometry. The anionic ligand is chelating through the nitrogen atoms and is strictly planar allowing delocalization of the -electron density. [Re(CO)2(PPh3)2(L6)] (6) crystallizes in the monoclinic space group P21/n witha = 22.203(5),b = 18.651(5),c =10.653(3) Å, = 91.08(3)°, Dc = 1.47 g cm–3 for Z = 4. The structure was refined to a final R of 4.7%. The complex is monomeric and the rhenium atom is distorted octahedral with two mutuallytrans PPh3 ligands, twocis CO ligands and one chelating Ph2CHCO 2 ion.  相似文献   

9.
CO hydrogenation over Ni-rutile and Ni-anatase catalysts has been studied at 470–520 K. Activity of the rutile catalyst is by an order of magnitude higher and it produces C1–C15-hydrocarbons; the anatase sample yields only C1–C3-paraffins. At 310–330 K the Ni-anatase catalyst loses nickel, while the nickel content in the Ni-rutile sample remains practically unchanged.
CO - 470–520 , ; C1–C15; — C1–C3. 310–330 - , .
  相似文献   

10.
The thermal decomposition of Cu(I) phosphine complexes of the general types (CuXPPh3)4, [CuX(PPh3)2] and [CuX(PPh3)3] was investigated.The thermal decomposition of (CuXPPh3)4, where X denotes Cl, Br, I, NO 3 and PPh3=P(C6H5)3, occurs with formation of a phosphine oxide intermediate. For the remaining complexes this intermediate was not proved in the thermal decomposition.
Zusammenfassung Die thermische Zersetzung der Cu(I)-Phosphinkomplexe vom allgemeinen Typ (CuXPPh3)4 und [CuX(PPh3)2], wie auch [CuX(PPh3)3] wurde untersucht. Die thermische Zersetzung von (CuXPPh3)4, wobei X=Cl, Br, I und NO 3 bedeutet und PPh3=P(C6H5)3, verläuft unter Bildung eines Phosphinoxid Zwischenproduktes, bei den übrigen Komplexen konnte dieses im Laufe der thermischen Zersetzung nicht nachgewiesen werden.

Résumé On a étudié la décomposition thermique des complexes phosphine-Cu(I) de formule générale (CuXPPh3)4, [CuX(PPh3)2], [CuX(PPh3)3]. La décomposition thermique de (CuXPPh3)4, où X désigne Cl, Br, I et NO 3 , et PPh3=P(C6H5)3, s'effectue avec formation d'un oxyde de phosphine intermédiaire; avec les autres complexes, cet intermédiaire n'a pas été mis en évidence au cours de la décomposition thermique.

(CuXPPb3)4 [CuX(PPh3)2] [CuX(PPh3)3]. (CuXPPh3)4, X=Cl, Br, I, NO 3 , PPh3=(65)3 . .
  相似文献   

11.
Cyclopentadienyldicarbonylmethyliron, [CpFe(CO)2Me] (1), undergoes migratory carbonyl insertion under the influence of isosteric phosphine ligands P(4-FC6H4)3 and P(4-MeC6H4)3. The products of the reaction, [CpFe(CO)(COMe)P(4-FC6H4)3] (2a) and [CpFe(CO)(COMe)P(4-MeC6H4)3] (2b), were characterised by X-ray crystallography. In both structures, the iron atom adopts a pseudo octahedral coordination geometry. Fe-P bond distances are the same at 2.1932(8) Å in 2a and 2b, respectively. Thus, contrary to what was expected, X-ray data could not be used to quantitatively differentiate between the two phosphine ligands in 2a and 2b. Therefore, additional spectroscopic techniques such as IR and NMR were employed. Similarly, the Fe-C bond lengths of the carbonyl (Fe-CO) and acetyl (Fe-COMe) are 1.748(3) and 1.955(3) in 2a, and 1.744(3) and 1.951(3) Å in 2b, respectively.The migratory carbonyl insertion was studied by NMR, IR, and UV-vis spectroscopies to determine the mechanism and the rate law. Results from NMR spectroscopy show that the formation of the product is accompanied by oxidation of the corresponding phosphine ligand. An increase in the reactivity of migratory carbonyl insertion for P(4-MeC6H4)3 was observed when the solvent was changed from CH2Cl2 to MeCN. The kinetic data showed that P(4-MeC6H4)3 reacts faster than P(4-FC6H4)3.  相似文献   

12.
The main purpose of the development of an Rh(I) Carbonyl Phosphine force field was to predict the molecular structure of Rh(I) complexes as well as to compute possible intermediates or transition states during the oxidative addition of CH3I to these complexes. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 692–703, 2000  相似文献   

13.
A number of cationic rhodium(I) complexes of the type [Rh(CO)2(NN)]ClO4, [Rh(CO)2L3]ClO4 and [Rh(CO)(NN)L2]ClO4, where (NN) is 2,2-bipyridine or 1,10-phenanthroline and L is a tertiary phosphine or arsine, have been isolated and their structures assigned. The configuration of the complexes ion [Rh(CO)2L3]+ appears to depend critically on the size of the ligand L.  相似文献   

14.

Naphthphosphacyclophanes based on symmetrical dihydroxynaphthalenes linked by diethylamidophospite groups were used to synthesize rhodium(I) complexes containing carb-onyl and acetylacetonato fragments. The physicochemical and spectral characteristics of the synthesized coordination systems were studied.

  相似文献   

15.
Phosphine sulfides and their gold(I) complexes with general formula R3P=S—Au—X (X = Cl, Br or CN) were prepared and characterized by elemental analyses, i.r. and 31P-n.m.r. spectroscopy. A decrease in the i.r. frequency of the P=S bond in the ligands upon complexation, is indicative of S coordination to gold (I). The 31P-n.m.r. spectra revealed that electronegativity of the substituents and angles between them were the two most important factors influencing the 31P-n.m.r. chemical shifts. The phosphorus resonance was observed to be more downfield in alkyl substituted phosphine sulfides as compared to the aryl substituted phosphine sulfides. Ligand scrambling in the Cy3P=S—Au—CN complex in solution, to form [(Cy3P=S)2Au]+ and [Au(CN)2], was investigated by 13C and 15N-n.m.r. spectroscopy. Equilibrium constants (K eq) for scrambling of the Cy3P=S—Au—CN complex and for its analogue, Cy3P=Se—Au—CN were measured by integrating the 13C-n.m.r. at 297 K and were found to be 0.147 and 1.81 respectively.  相似文献   

16.
The synthesis of a series of (fluoroalkyl)phosphine complexes of nickel is reported. Treatment of (cod)2Ni with dfepe (dfepe=(C2F5)2PCH2CH2P(C2F5)2) yields (dfepe)Ni(cod) (1), which has been structurally characterized. Treatment of 1 with CO or bipy results in the formation of (dfepe)Ni(CO)2 (2) and (dfepe)Ni(bipy) (3), respectively. Addition of excess dfepe to 1 results in incomplete cod displacement to form (dfepe)2Ni (4). The homoleptic complex 4 may be independently prepared in high yield by reduction of (acac)2Ni with (iBu)3Al in the presence of butadiene and excess dfepe. Solvation of (dfepe)Ni(cod) in acetonitrile gives a new complex tentatively identified as (dfepe)Ni(MeCN)2 (6), whereas dissolution of (dfepe)2Ni in acetonitrile leads to a mixture of 6 and the partial displacement product (dfepe)(η1-dfepe)Ni(MeCN) (5). In contrast to (R3P)4Ni(0) phosphine and phosphite complexes, which undergo protonation by strong anhydrous acids such as HCl, H2SO4 and CF3CO2H to give (R3P)4Ni(H)+ products, Treatment of (dfepe)2Ni with neat CF3CO2H or excess HOTf in dichloromethane gave no spectroscopic evidence for (dfepe)2Ni(H)+. Exposure for extended periods leads to dfepe loss and decomposition to Ni(II) products. The synthesis of the first cobalt complex of dfepe, (dfepe)Co(CO)2H, is also reported.  相似文献   

17.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Novel binuclear substituted manganese(I) carbonyls [Mn(CO)4?nLn]2(μ-N-N)2 (n = 1, (N-N)2 = biimidazolate, L = PBun3; (N-N)2 = bibenzimidazolate, L = P(OMe)3, P(OPh)3, PPh3, PEt3 or PBun3, as well as n = 2; (N-N)2 = biimidazolate, or bibenzimidazolate, L = PBun3, PEt3 or P(OMe)3) are described, in which the anions (N-N)2 act as tetradentate bridging-groups. They were prepared by treating [Mn(CO)4(μ-Br)]2 with thallium or potassium salts of 2,2′-biimidazole or 2,2′-bibenzimidazole and subsequent displacement of CO by L. The structures of the complexes are discussed.  相似文献   

19.
The symmetric rhenium(V) oxo Schiff base complexes trans-[ReO(OH2)(acac2en)]Cl and trans-[ReOCl(acac2pn)], where acac2en and acac2pn are the tetradentate Schiff base ligands N,N'-ethylenebis(acetylacetone) diimine and N,N'-propylenebis(acetylacetone) diimine, respectively, were reacted with monodentate phosphine ligands to yield one of two unique cationic phosphine complexes depending on the ligand backbone length (en vs pn) and the identity of the phosphine ligand. Reduction of the Re(V) oxo core to Re(III) resulted on reaction of trans-[ReO(OH2)(acac2en)]Cl with triphenylphosphine or diethylphenylphosphine to yield a single reduced, disubstituted product of the general type trans-[Re(III)(PR3)2(acac2en)]+. Rather unexpectedly, a similar reaction with the stronger reducing agent triethylphosphine yielded the intramolecularly rearranged, asymmetric cis-[Re(V)O(PEt3)(acac2en)]+ complex. Reactions of trans-[Re(V)O(acac2pn)Cl] with the same phosphine ligands yielded only the rearranged asymmetric cis-[Re(V)O(PR3)(acac2pn)]+ complexes in quantitative yield. The compounds were characterized using standard spectroscopic methods, elemental analyses, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic data for the structures reported are as follows: trans-[Re(III)(PPh3)2(acac2en)]PF6 (H48C48N2O2P2Re.PF6), 1, triclinic (P), a = 18.8261(12) A, b = 16.2517(10) A, c = 15.4556(10) A, alpha = 95.522(1) degrees , beta = 97.130(1) degrees , gamma = 91.350(1) degrees , V = 4667.4(5) A(3), Z = 4; trans-[Re(III)(PEt2Ph)2(acac2en)]PF6 (H48C32N2O2P2Re.PF6), 2, orthorhombic (Pccn), a = 10.4753(6) A, b =18.4315(10) A, c = 18.9245(11) A, V = 3653.9(4) A3, Z = 4; cis-[Re(V)O(PEt3)(acac2en)]PF6 (H33C18N2O3PRe.1.25PF6, 3, monoclinic (C2/c), a = 39.8194(15) A, b = 13.6187(5) A, c = 20.1777(8) A, beta = 107.7730(10) degrees , V = 10419.9(7) A3, Z = 16; cis-[Re(V)O(PPh3)(acac2pn)]PF6 (H35C31N2O3PRe.PF6), 4, triclinic (P), a = 10.3094(10) A, b =12.1196(12) A, c = 14.8146(15) A, alpha = 105.939(2) degrees , beta = 105.383(2) degrees , gamma = 93.525(2) degrees , V = 1698.0(3) A3, Z = 2; cis-[Re(V)O(PEt2Ph)(acac2pn)]PF6 (H35C23N2O3PRe.PF6), 5, monoclinic (P2(1)/n), a = 18.1183(18) A, b = 11.580(1) A, c = 28.519(3) A, beta = 101.861(2) degrees , V = 5855.9(10) A(3), Z = 4.  相似文献   

20.
The kinetics and mechanism of photodehydrogenation of the phosphine hydride complexes MH4L4 (M = Mo, W; L are phosphine ligands) and the formation of coordinatively unsaturated species ML4 were studied by the absorbance of long-wavelength bands with λmax at 450–460 nm appeared in the absorption spectra of the photoproducts. The rate constants of the reactions of the coordinatively unsaturated M(DPPE)2 species (M = Mo, W; DPPE = Ph2PCH2CH2PPh2) with molecular nitrogen in benzene were determined (k W = 200 s−1, k Mo = 8700 s−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 282–284, February, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号