首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磁性铁氧化物纳米粒子(MIONPs)是近几十年发展起来的一种具有磁靶向性的纳米材料,其以良好的磁靶向性、小尺寸效应、生物相容性等特点在生物医学领域具有很好的应用前景,尤其在药剂学领域的应用已经成为一个重要的研究方向。本文在总结近年来国内外有关多功能MIONPs研究成果的基础上,阐述了各种铁氧化物纳米粒子在药剂学领域的应用,主要包括MIONPs的智能载药靶向控释、对特殊药物的靶向负载、降低身体的多药耐药性(MDR)、加强药物治疗效果、载药穿透血脑屏障(BBB)等;并讨论了当前应用中的优点和不足。最后,展望了其在药物、药剂学领域的应用前景并指出了一些亟待解决的问题。  相似文献   

2.
吴伟  贺全国  陈洪 《化学进展》2008,20(2):265-272
表面功能化的磁性铁氧化物纳米粒子是一种新型功能材料,可应用于各种生物活性物质如蛋白质、DNA等的富集和分离,药物的磁靶向,以及疾病的诊断和治疗等许多领域.本文在总结近年来国内外有关功能化磁性铁氧化物纳米粒子研究成果的基础上,阐述了功能化磁性铁氧化物纳米粒子的结构类型、特点、目前的各种功能化制备方法以及相关应用最新研究进展,指出了当前研究中的主要发展方向和仍需要解决的问题.  相似文献   

3.
毕洪梅  韩晓军 《化学进展》2018,30(12):1920-1929
复合磁性生物材料的发展和应用已引起生物医学领域的极大关注。磁性纳米粒子因其易功能化而具有靶向药物传递、可控药物释放及磁成像特性逐渐成为药物传递和新型诊疗领域最有前途的材料之一。基于磁性纳米粒子或掺杂的铁氧化物构建的远程触发磁性载药递送系统,有望实现在运输过程中携载药物不泄露的情况下,提高药物递送效率且对病灶周围的健康细胞无毒或低毒性。为构建理想的可控靶向磁性药物递送系统,多种材料或配体可以与磁性纳米粒子复合来构建更安全有效的磁性药物递送系统。一些生物分子、聚合物及天然产物等通过与磁性纳米粒子相结合,构建出可用于药物传递且具有独特性质的磁性复合新材料。迄今为止,具有磁场应答能力的磁性药物递送载体已经在远程控制药物释放领域得到了长足发展。本文总结了近年来磁性药物递送载体作为远程控制治疗体系在设计与构建上的研究进展。重点关注了磷脂分子、聚合物、多孔微纳米材料以及天然产物等与其构建的复合材料,并对当前磁性复合特定给药载体的优点、局限及发展前景等做了简要阐述。  相似文献   

4.
磁性铁氧化物纳米粒子由于其生物相容性和低毒性而广泛的应用于生物医学领域。本文总结了近年来制备各种磁性铁氧化物纳米粒子的方法,比较了它们在粒径、结晶度以及制备条件等方面的优缺点,概括了对其进行表面修饰改性材料的种类,阐述近年来磁性铁氧化物纳米粒子在体内应用中药物运输、磁共振成像、磁热疗方面的进展,并指出当前应用中的主要方向和亟待解决的问题。  相似文献   

5.
单分散磁性纳米粒子靶向药物载体   总被引:2,自引:0,他引:2  
本文综述了单分散磁性氧化铁纳米粒子的主要制备方法、表面修饰以及在生物医学靶向药物方面的应用研究进展。金属有机前驱体高温热分解法、溶剂热合成法和LSS(liquid-solid-solution)法是目前制备高质量单分散磁性纳米粒子比较有效的手段。通过表面修饰制备出的具有良好水溶性、生物相容性和活性功能基团的磁靶向药物载体将可能实现定位蓄积、高效载药、控制释药和可生物降解等靶向治疗癌症的目的。开发出具有荧光检测、主动靶向识别、高效载药、智能控药释放、无毒副作用和生物相容性于一体的多功能靶向药物载体将是其发展趋势。  相似文献   

6.
采用蠕动泵、钕铁硼永磁铁、聚乙烯管、恒温水浴锅和玻璃管组装了一种模拟人体血液循环的磁靶向装置,并应用于模型磁性载药粒子Fe3O4@DFUR-LDH(DFUR:去氧氟尿苷;LDH:硝酸根插层水滑石)的磁靶向定位和药物释放性能的分析。 研究发现,该装置对磁性载药粒子的滞留量最高可达85.3%,并随载药粒子与磁场的间距增大而减小,随释放介质的流速增大而减小。 而装置中模型磁性载药粒子的药物释放速率随释放介质的流速增大而增大。 同时,通过修改该装置的管路系统模拟了药物在治疗过程中不断被消耗情形下的磁靶向治疗过程。 该装置不但可以实现磁性载药粒子的滞留,还可以分析磁性载药粒子被滞留后的定位释放行为,是磁性载药粒子临床试验前性能分析测试的有效工具。  相似文献   

7.
盘登科  张慧 《化学学报》2011,69(13):1545-1552
通过调变镁铁尖晶石的含量, 采用一步共沉淀法制备了一系列具有核壳结构的水滑石型磁性纳米载药粒子, 对其微结构、热稳定性、磁性和药物释放性能进行了系统的研究. 结果表明这种磁性纳米载药粒子是一种具有以镁铁尖晶石为核层、双氯酚酸(Diclofenac, DIC)插层水滑石(DIC-LDH)为壳层的复合纳米粒子, 粒径在90~180 nm之间. 其中壳层DIC-LDH的晶粒尺寸D110和层板电荷密度随磁核含量的增大而逐渐减小. 磁性纳米载药粒子的载药量随磁核含量的增大而逐渐减小, 而其比饱和磁化强度则随着磁核含量的增大逐渐增大. 体外释放实验表明, 无外加磁场时, 磁核含量增大, 壳层DIC-LDH粒径减小, 磁性纳米载药粒子药物释放速率逐渐增大|外加1500 G磁场时, 磁核含量增大, 磁致团聚程度增大, 其药物释放速率逐渐减小.  相似文献   

8.
铁氧化物/金磁性核壳纳米粒子的制备及其富集与SERS研究   总被引:3,自引:0,他引:3  
本文用种子生长法制备铁氧化物/金磁性核壳纳米粒子, 并利用SERS对其磁场靶向性进行了检测.  相似文献   

9.
以单甲醚-聚乙二醇-聚(丙交酯-乙交酯)(mPEG-PLGA)作为载体,采用溶液透析的方法共同装载抗癌药物吴茱萸碱和Fe3O4 磁性纳米粒子. 通过透射电子显微镜、红外光谱、紫外-可见光谱及体外释放实验、普鲁士蓝染色、体外毒性实验和磁靶向研究,综合评价了磁性纳米药物载体的性能. 结果表明,磁性药物载体胶束分散性良好,粒径均一,有较高的载药量和包封率,能够实现药物缓释,具有磁靶向特性.  相似文献   

10.
吴伟  贺全国  陈洪 《化学通报》2007,70(4):277-285
磁性纳米粒子是一种新型纳米材料,可应用于各种生物活性物质如蛋白质、DNA等的富集和分离,药物的磁靶向,以及疾病的诊断和治疗等许多领域。由于磁性纳米粒子有着独特的化学和物理性能,已经成功应用到磁控生物传感器、DNA传感器、蛋白质传感器、酶传感器以及其它类型的生物传感器中,并显著提高了生物传感器检测的灵敏度、缩短了生化反应的时间和提高检测的通量,为生物传感器领域开辟了广阔的应用前景。本文概述了磁性纳米粒子在生物传感器中的应用研究进展。  相似文献   

11.
基于氧化铁纳米材料特性的生物分离和生物检测   总被引:1,自引:0,他引:1  
氧化铁纳米粒子是一种新型的磁功能材料,被广泛应用于生物、材料以及环境等众多领域.本文介绍了超顺磁氧化铁纳米粒子的制备方法,比较了各种方法的优缺点;评述了磁性氧化铁纳米粒子在细胞、蛋白质和核酸分离及生物检测中的应用,对多功能复合磁性氧化铁纳米粒子的构建, 在生物医学领域中的应用具有的指导意义.  相似文献   

12.
报道了一种应用光化学法一步原位合成具有良好亲水性和生物相容性的PEGMA磁性纳米凝胶的方法.在亲水性Fe3O4纳米粒子水体系中,以甲基丙烯酸聚乙二醇酯(PEGMA)N单体,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,紫外光辐照下原位聚合制备了聚(甲基丙烯酸聚乙二醇酯)磁性纳米凝胶(简称为PEGMA磁性纳米凝胶),应用傅立叶变换红外光谱(FTIR)和热重分析仪(TGA)对磁性纳米凝胶的表面官能团和组分进行了分析,结果显示经紫外辐照后PEGMA成功包覆在Fe3O4纳米粒子表面,从而制备得到PEGMA磁性纳米凝胶,磁性Fe3O4含量高达53.4%;对磁性纳米凝胶的形貌、粒径、表面Zeta电位及磁学性质等进行了表征,结果显示磁性纳米凝胶形状较规则,具有核-壳结构,干燥状态下平均粒径约为46nm,而湿态下平均水合粒径为68.4nm,表明其外层的水凝胶在水相中具有较强的吸水膨胀能力;磁性纳米凝胶具有超顺磁性,饱和磁化强度为58.6emu/g,在生理pH下,磁性纳米凝胶的表面Zeta电位为-16.3~-17.3mV,能够减少与血红蛋白的吸附作用,可在血液中保持稳定.在其载药性能中发现,PEGMA磁性纳米凝胶对模型药物阿霉素具有良好缓释性能.该超顺磁性纳米凝胶具有高的饱和磁化强度,生理pH下负的表面Zeta电位,以及良好的亲水性和生物相容性等特性,预示着在靶向载药等生物医学领域有着广泛的应用前景.  相似文献   

13.
季帆  曾恺  张坤  李杰  张剑锋 《高分子学报》2016,(12):1704-1709
采用共沉淀法制备了用柠檬酸包覆的Fe3O4磁性纳米粒子,为提高其生物环境适应性和生物应用,利用聚乙二醇二胺(NH2-PEG-NH2)通过碳二亚胺化学法进一步修饰,得到具有良好性能的磁性纳米粒子修饰剂,并分别用场发射扫描电子显微镜(SEM)、洛伦兹透射电子显微镜(TEM)、马尔文激光粒度仪、X-射线粉末衍射仪(XRD)、傅里叶变换红外光谱(FTIR)、综合热分析仪(TG/DTA)、振动样品磁强计(VSM)对磁性纳米粒子的表面形态、化学结构、晶体结构、热稳定性和磁性能进行了表征.在此基础上用合成的磁性纳米粒子修饰剂对盐酸阿霉素(DOX·HCl)进行了修饰,研究了修饰剂的载药和释药行为.结果表明,所制备的修饰剂近乎球形,尺寸相对均匀,粒径在15 nm左右,饱和磁化强度为68 A·m2/kg,在磁靶向药物运输中可以达到良好的磁响应性能.在水中的载药量达到83%,在p H=7.4和p H=5.0下,磁性纳米粒子载药盐酸阿霉素释放均是一个缓慢的过程,具有明显的缓释效果,此外,由于不同p H值下,DOX中的氨基质子化程度存在差异,在较低的p H值下质子化的氨基互相排斥,这更有利于DOX的释放,累计释药率在72 h后分别为65.8%(p H=7.4)与73.6%(p H=5.0).研究表明该磁性纳米粒子具有很好的载药能力及缓释效果.  相似文献   

14.
磁性液体的合成及生物医学应用   总被引:6,自引:0,他引:6  
本文综述了纳米磁粉的化学合成及磁性液体的一般制备方法及其磁性、磁流变性和磁熵热效应等在靶向给药、栓塞治疗、温热治疗上的应用。  相似文献   

15.
羧甲基壳聚糖磁性纳米粒子的合成及应用   总被引:1,自引:0,他引:1  
通过合成油酸修饰的Fe3O4纳米粒子和羧甲基壳聚糖直接包埋油酸修饰的Fe3O4纳米粒子的两步合成法制备了羧甲基壳聚糖磁性纳米粒子。采用透射电子显微镜、傅里叶变换红外光谱、振动样品磁强计和同步热分析测试技术对制备的羧甲基壳聚糖磁性纳米粒子进行了表征。所得磁性纳米粒子呈规则球形,粒径约为10 nm;表面含羧基,且具有很好的顺磁性和稳定性。考察了羧甲基壳聚糖磁性纳米粒子对阿霉素的载药量和对阿霉素在磷酸盐缓冲溶液中的缓释性能。结果表明,磁性纳米粒子对阿霉素展示了较高的载药量(91.8 mg/g),结合了阿霉素的磁性复合物对阿霉素的缓释作用明显,说明制备的羧甲基壳聚糖磁性纳米粒子有望作为治疗肿瘤的纳米磁靶向药物输送载体。  相似文献   

16.
磁粒子成像是基于功能和断层影像技术检测磁性纳米粒子空间分布的示踪方法, 具有正向的对比信号、 较低的组织背景、 无限的组织穿透深度、 非侵入性成像以及无电离辐射等优点, 是近年来一种很有前途的生物医学成像技术. 磁粒子成像信号是通过在无场点切换磁性纳米粒子的磁自旋矢量来产生的. 磁粒子成像的灵敏度和空间分辨率都高度依赖于作为磁粒子成像示踪剂的磁性纳米粒子本身的磁性能, 因此目前的研究主要集中在磁性纳米粒子的设计和合成上. 本文重点介绍了磁粒子成像示踪剂的最新研究进展, 总结了可作为磁粒子成像示踪剂的磁性纳米粒子的种类、 合成方法、 性能以及生物医学应用, 以期为磁粒子成像的未来研究提供参考.  相似文献   

17.
核壳结构Fe_3O_4@SiO_2复合纳米粒子的制备   总被引:1,自引:0,他引:1  
Fe3O4磁性纳米粒子具有独特的磁学性质,如超顺磁性和高饱和磁化强度等,而且生物相容性较好,毒副作用小,在靶向药物载体、磁共振成像、细胞和生物分子分离、免疫检测等生物医学领域具有广阔的应用前景,因此近年来备受人们的关注[1-2].但由于磁性纳米粒子具有较高的比表面积和强烈的聚集倾向,且化学稳定性不高,易被氧化,难以直接应用.  相似文献   

18.
聚合物纳米粒子用于给药载体   总被引:10,自引:0,他引:10  
聚合物纳米粒子用于给药载体具有广阔的前景,本文按聚合物纳米粒子的主要制备方法(单体聚合法,聚合物后分散法和两亲性聚合物自组装法等)综述了它近十年来在药物靶向输送上的应用研究进展。  相似文献   

19.
陶可  窦红静  孙康 《化学进展》2006,18(11):1460-1467
铁的氧化物纳米颗粒作为一种重要的磁性纳米颗粒在磁记录材料、磁性液体、催化、尤其是生物医用领域有着广泛的应用前景,因而受到了研究者们极大的关注。本文对铁的氧化物磁性纳米颗粒的化学制备方法进行了综述,将其归结为复分解和热分解两种策略;总结了近期含铁的氧化物纳米颗粒组装体的研究进展,并对未来的发展做了展望。  相似文献   

20.
张咚咚  刘敬民  刘瑶瑶  党梦  方国臻  王硕 《化学进展》2018,30(12):1908-1919
目前,利用纳米粒子传递药物并用于恶性肿瘤组织的靶向识别,进一步提高肿瘤的诊断和治疗水平是一个比较热点的领域,人们期望用制备容易、价格便宜、毒性小的纳米技术来提高肿瘤的治疗效率。然而,由近年的报道来看,所摄入的纳米粒子仅有约0.7%能够到达肿瘤部位,传递效率较低,这无疑加大了治疗应用的难度。本综述中,我们分析了造成纳米粒子靶向药物转运效率较低的原因,包括纳米粒子的转运途径,纳米粒子转运过程中所遇到的屏障,纳米粒子在体内的清除途径等;随后我们介绍了较早应用的聚合物纳米粒子、磁性氧化铁纳米粒子以及目前广泛研究的介孔二氧化硅纳米粒子在药物传递系统构建中的应用情况,还介绍了细胞膜仿生纳米粒子在药物传递系统中的应用;最后,对纳米粒子在药物传递中的研究进行总结和展望。我们希望通过对纳米粒子传递药物的系统研究,进一步促进纳米粒子在药物传递上的研究,加速纳米药物的临床应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号