首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以1,2-二甲氧基苯,丁二酸酐以及α-溴代四乙酰基吡喃糖为原料,设计并合成了作为SGLT2抑制剂的两个结构新颖的苯萘基糖苷化合物(6a和6b),其结构经1H NMR, 13C NMR, IR和ESI-MS确认.利用小鼠体内葡萄糖耐受量法测定了6治疗糖尿病的活性,结果发现6a具有明显的降血糖作用,其活性与阳性对照药格列齐特相当.  相似文献   

2.
孔亮  冯秀娥  高洁  李静  李青山 《应用化学》2014,31(10):1185-1190
合成了13个具有新型结构的苯基(噻吩-2-基)甲酮类化合物,其中3个化合物(9b,10b,11b)未见文献报道,目标化合物的结构均经ESI-MS、1H NMR和13C NMR等技术手段进行了确证。 对H2O2诱导的人脐静脉内皮细胞(HUVECs)氧化损伤保护活性的结果显示,对位甲氧基以及两个氯原子取代的活性较好。 初步构效关系表明,苯基噻吩甲酮母环上取代基的位置、数目、类型是影响化合物活性的主要原因。  相似文献   

3.
以β-蒎烯的衍生物诺蒎酮为原料,合成了系列新型蒎烷基噻唑衍生物,并对其生物活性进行了研究.β-蒎烯经高锰酸钾氧化所得到的诺蒎酮与氨基硫脲进行缩合反应,得到诺蒎酮缩氨基硫脲;诺蒎酮缩氨基硫脲再与α-卤代酮进行环化,得到新型蒎烷基噻唑衍生物2a~2l.采用FTIR,1H NMR,13C NMR和HRMS对化合物2a~2l的结构进行了表征.探讨了化合物2a~2l的抑菌活性、对人脐静脉内皮细胞(HUVECs)的抗炎活性以及对紫薇蚜虫的杀虫活性.结果表明,化合物2b具有很好的抗菌活性,对细菌和真菌的抑制效果分别与阿米卡星和酮康唑的效果相当;化合物2a则具有显著的抗炎活性,化合物2e、2h、2i和2k对紫薇蚜虫具有一定的杀虫活性.  相似文献   

4.
刘新华  白林山  王世范 《合成化学》2006,14(3):272-274,316
首次合成了7个新的5-(2-羟基-6-甲氧基苯基)-3-甲基-N-取代酰基-4,5-二氢吡唑-1-硫代酰胺衍生物,其结构经1H NMR,IR和元素分析表征。初步生物活性测试结果表明,部分化合物具有杀菌活性。  相似文献   

5.
为了寻找新的含苯并噻唑稠杂环农药先导化合物,以2-氨基-6-甲氧基苯并噻唑为起始原料,经肼化、环化和酰基化反应,合成出了14个N-酰基-7-甲氧基苯并[4,5]噻唑并[2,3-c][1,2,4]三唑-3(2H)-硫酮,并利用1H NMR,ESI-MS及元素分析对其结构进行表征.对目标化合物进行初步的除草活性筛选,实验结果表明:在浓度为200 mg/L时,大部分化合物对黄瓜(Cucumis sativus)、小麦(Triticum aestivum)、高粱(Sorghum vulgare)、萝卜(Raphanus sativus)、油菜(Brassica campestris)和稗草(Echinochloa crusgalli)的根和茎的抑制率在85%以上.  相似文献   

6.
以丙二酸二乙酯为原料,经溴化、醚化得甲氧基苯氧基丙二酸二乙酯(3);3与嘧啶甲脒环合、卤代合成了4,6-二氯-5-(2-甲氧基-苯氧基)-2,2'-联嘧啶,总收率37.29%,其结构经1H NMR,IR和MS确证。  相似文献   

7.
黄娇娇  张珩  杨艺虹  林晨 《合成化学》2011,19(6):809-811
以丙二酸二乙酯为原料,经溴化、醚化得甲氧基苯氧基丙二酸二乙酯(3);3与嘧啶甲脒环合、卤代合成了4,6-二氯-5-(2-甲氧基-苯氧基)-2,2′-联嘧啶,总收率37.29%,其结构经1H NMR,IR和MS确证.  相似文献   

8.
以2,4-二卤代联苯为原料,经傅-克酰基化、还原、取代等反应步骤,合成了含有2,4-二卤代联苯基的新型唑类目标化合物3a~3k,其结构用红外光谱(IR)、高分辨质谱(HMRS)、核磁共振氢谱(1H NMR)、核磁共振碳谱(13C NMR)等技术手段进行了表征。 测试了目标化合物的体外抗真菌活性,结果表明,所有目标化合物对所测试的致病真菌均有一定程度的抗真菌活性。 其中化合物3a~3k对红色发癣菌和石膏样毛癣菌的抗真菌活性和两性霉素B相当,化合物3b、3c、3e、3f、3h、3i、3k对白色念珠菌的抗真菌活性优于或等于酮康唑。  相似文献   

9.
以卤代芳烃为原料,经硼酸化反应和Suzuki偶联反应合成了一系列三芳基-2-硼酸化合物,收率67.4%~70.1%,纯度均98%,其结构经1H NMR和元素分析确证。  相似文献   

10.
以邻硝基苯甲醛为起始原料,经还原和氨基保护合成2-乙酰胺基苯甲醛(1)。应用环境友好的聚乙二醇-400为溶剂,以N-卤代丁二酰亚胺为卤代试剂对化合物2-乙酰胺基苯甲醛(1)进行卤代,制备了5-溴(氯)-2-乙酰胺基苯甲醛(2a,2b)。在三甲基氯硅烷(TMSCl)催化作用下,5-溴(氯)-2-乙酰胺基苯甲醛(2a,2b)与4-氯乙酰乙酸乙酯发生Friedlnder缩合反应,合成目标产物6-溴(氯)-2-氯甲基-3-喹啉甲酸乙酯(3a,3b)。其中2a,2b,3a,3b的结构经IR、1H NMR、13C NMR、MS得以确定。  相似文献   

11.
phase diagrams of KCl-KBO2-K2CO3, K2MoO4-KBO2-K2CO3, and K2WO4-KBO2-K2CO3 ternary systems were studied by a calculation-experimental method and differential thermal analysis (DTA). The coordinates of ternary eutectics were determined to be E 1: 622°C, 8.5 mol % KBO2, 56.5 mol % KCl, and 35 mol % K2CO3; E 2: 710°C, 23 mol % KBO2, 43 mol % K2CO3, and 34 mol % K2MoO4; E 3: 710°C, 23 mol % KBO2, 43 mol % K2CO3, and 34 mol % K2WO4. The specific heats of melting of the eutectics were determined.  相似文献   

12.
Solubility in the Na2Cr2O7-(NH4)2Cr2O7-K2Cr2O7-H2O four-component water-salt system at 25, 50, and 75°C was studied for the first time. Phase field boundaries for individual salts and potassium and ammonium dichromate solid solutions, monovariant lines, and invariant points were determined. Experimental data were used to optimize the looped isohydric process of potassium dichromate preparation involving additional salts.  相似文献   

13.
一些具有NASICON型网格结构的固体电解质具有高的电导率和好的稳定性,NASICON的意思是Na Super Ionic Conductor[1]。当NaZr2(PO4)3中P5 被Si4 部分取代时便可以得到具有NASICON结构的Na1 xZr2SixP3-xO12体系,其具有高的钠离子电导率。然而有相同结构的Li1 xZr2SixP3-xO12体系的离子电导率却很低,这是因为Li 半径太小,而NASICON三维网格结构的离子通道太大,两者不匹配而使电导率下降[2]。但当LiZr2(PO4)3中Zr4 被离子半径小些的Ti4 取代,所得LiTi2(PO4)3的通道就与Li 半径相匹配,适合于锂离子的迁移,从而使其电导率…  相似文献   

14.
马修臻  胡斌 《化学通报》2018,81(10):939-943,938
本文用高精度数字式振荡管密度计测定了288K至318K温度范围内Li2SO4 + Na2SO4 + H2O和 Li2SO4 + K2SO4 + H2O三元体系的密度。混合溶液的离子强度范围从0.1到4.5 mol.kg–1,混合溶液中Na2SO4和K2SO4的离子强度分数为0.2,0.4,0.6和0.8。用密度实验值拟合得到了不同温度下Pitzer离子相互作用模型混合参数θV和 ψV,模型的计算值与实验值的偏差在±0.002 g.cm3以内。用Pitzer模型计算了不同离子强度下三元体系的混合体积。  相似文献   

15.
MMe5(dmpe) (M = Nb or Ta, dmpe = Me2PCH2CH2PMe2) reacts with H2 (500 atm) and dmpe in THF at 60°C to give MH5(dmpe)2? NbH5(dmpe)2 readily reacts with two mol of CO or ethylene (L) to give NbHL2(dmpe)2. The exchange of the hydride ligand with the ethylene protons in NbH(C2H4)2(dmpe)2 is not rapid on the 1H NMR time scale (60 MHz) at 95°C.  相似文献   

16.
The novel, 1D semiconductor (H2NC4H8NCH2CH2NH2)(HNCH2CH2NH2)3Zn2Ge2Se8 has been synthesized under solvothermal conditions using N-(2-aminoethyl)piperazine as solvent and templating agent at 200 °C. The material was characterized by single crystal and powder X-ray diffraction, IR and Raman spectroscopy and thermogravimetric analysis. The compound consists of 1D anionic [Zn2Ge2Se8]4− chains made of alternating edge-shared [ZnSe4] and [GeSe4] tetrahedra that charged balanced by one N-(2-aminoethyl)piperazinium and three piperazinium cations. The optical properties were investigated with solid state UV–Vis/near IR spectroscopy and the results show that the solid is a medium gap semiconductor with an absorption edge at 1.8 eV.  相似文献   

17.
The phase diagrams of the NaBO2-NaCl-Na2CO3, NaBO2-Na2CO3-Na2MoO4, NaBO2- Na2CO3-Na2WO4, and NaBO2-NaCl-Na2WO4 ternary systems were studied by a calculation-experimental method and differential thermal analysis. The coordinates of ternary eutectics were determined: E 1: 612°C, 16 mol % NaBO2, 42 mol % NaCl, and 42 mol % Na2CO3; E 2: 568°C, 12 mol % NaBO2, 28 mol % Na2CO3, and 60 mol % Na2MoO4; E 3: 575°C, 12 mol % NaBO2, 32 mol % Na2CO3, and 56 mol % Na2WO4; E 4: 628°C, 8 mol % NaBO2, 20 mol % NaCl, and 72 mol % Na2WO4; and E 5: 655°C, 9 mol % NaBO2, 53 mol % NaCl, and 38 mol % Na2WO4.  相似文献   

18.
The lithium-ion-conducting inorganic solid electrolytes in the oxide systems Li2O-SiO2-P2O5 and Li2O-TiO2-SiO2-P2O5 were prepared by the solid-state reaction, and the electrolyte pellet made by cold-pressing method had diameter of 13 mm and was about 1 mm thick. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through ac impedance. The results show that the adding of other cations can improve the ionic conductivity of the solid electrolyte, and the sintering temperature and duration can influence the ionic conductivity. The maximum ionic conductivity in the samples is 9.9 × 10−4 S/cm in the Li2O-TiO2-SiO2-P2O5 system. Original Russian Text ? W. Li, M. Wang, Z.H. Li, X.F. Shang, H. Wang, Y.W. Wang, Y.B. Xu, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 11, pp. 1341–1345.  相似文献   

19.
This paper examines the structural changes with temperature and composition in the Sc2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Y2O3 and Sc2O3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc2Si2O7 in β-Y2Si2O7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc2−xYxSi2O7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β-RE2Si2O7 structure. Finally, it is interesting to note that, although Sc2Si2O7 shows a unique stable polymorph (β), Sc3+ is able to replace Y3+ in γ-Y2Si2O7 in the compositional range 1.86?x?2 (where x is Sc2−xYxSi2O7) as well as in δ-Y2Si2O7 for compositions much closer to the pure Y2Si2O7.  相似文献   

20.
Reactions of [Cp2Ti(btmsa)] (btmsa = bis(trimethylsilyl)acetylene) with R4Sb2 (R = Me, Me3Si) give [Cp2TiSbMe2]2 (1) or [Cp2TiSb(SiMe3)2]2 (2) respectively. [Cp2TiCl]2·2Mes4Sb2 (3) is serendipitously formed from [Cp2Ti(btmsa)] and Mes2SbH containing NH4Cl traces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号