首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral molecules, which may contain one or more different type(s) of stereocentres, such as central, axial, planar, and helical chiralities, etc., are indispensable in chemistry, pharmaceutical industry, and life science. Despite many advances for the preparation of chiral molecules usually with a single type of chirality have been realized, simultaneous construction of different types of chiralities is still a significant challenge. Here, we wish to report a protocol for preparation of chiral allenes with both central and axial chiralities via a catalytic asymmetric allenylation of different biologically or synthetically useful fluorinated or non‐fluorinated nucleophiles with readily available racemic allenes by using a single chiral ligand. An echoing between the central chirality and axial chirality for the enantioselectivity was observed. This strategy provides a general and practical approach to functionalized optically active allenes bearing both central and axial chiralities with an excellent enantioselectivity under mild conditions.  相似文献   

2.
手性溶剂诱导非手性物质产生手性是目前合成手性物质的主流方法之一。与传统的手性物质合成方法相比,手性溶剂诱导法不仅避免了使用昂贵的手性试剂,还能扩大合成手性物质的结构范围,具有潜在的应用前景。目前,手性溶剂诱导方法适用范围已经涵盖了有机小分子、低聚物和聚合物体系。本文主要对手性溶剂诱导方法发展的历史背景,手性溶剂诱导小分子及低聚物的手性,手性溶剂诱导非手性聚合物产生超分子手性,主要包括π-共轭聚合物和σ-共轭聚合物这几个方面展开了综述。  相似文献   

3.
The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring‐open diarylethenes is doped with a small amount of their chiral, ring‐closed counterpart. The molecules co‐assemble into helical fibers through hydrogen bonding and the handedness of the fibers is biased by the chiral, ring‐closed diarylethene. Photochemical ring closure of the open diarylethene yields the ring‐closed product, which is enriched in the template enantiomer.  相似文献   

4.
The study of an enantiopure bicyclic pillar[5]arene-based molecular universal joint (MUJ) by single-crystal X-ray diffraction allowed for the first time the unequivocal assignment of the absolute configuration of a planar chiral pillar[5]arene by circular dichroism spectroscopy. Crucially, the absolute configuration of the MUJ was switched reversibly by temperature, with an accompanying sign inversion of the anisotropy factor that varied by as much as 0.03, which is the largest value ever reported. Mechanistically, the reversible chirality switching of the MUJ is driven by the threading/dethreading motion of the fused ring and hence is dependent on both the size and nature of the ring and the solvent employed, reflecting the critical balance between the self-complexation of the ring by pillar[5]arene, the solvation to the excluded ring, and the inclusion of solvent molecules in the cavity.  相似文献   

5.
Central‐to‐axial chirality conversion represents a fascinating class of chemical processes consisting of the destruction of stereogenic centers and the simultaneous installation of axial chiral elements, which provides efficient methods for the preparation of axially chiral compounds. Using the strategy, a wide range of axially chiral compounds, including biaryls, heterobiaryls, aromatic amides, allenes and vinyl arenes, have been synthesized with high efficiency and excellent enantioselectivity. In addition, central‐to‐axial chirality conversion strategy has been applied to the synthesis of natural products. The strategy has undoubtedly become and will continue to be a hot research topic in the field of asymmetric catalysis and synthesis. In this minireview, we selected some examples to introduce the developments and trends in the central‐to‐axial chirality conversion strategy up to April 2020.  相似文献   

6.
7.
The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host–guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host–guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non‐rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.  相似文献   

8.
For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l ‐phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials.  相似文献   

9.
The spinning cone is a model of rotating molecules used by Barron in 1986 in relation to asymmetric synthesis and to parity violation. He considered that the non-translating cone spinning about its symmetry axis has false chirality (i.e., it is not chiral), whereas Mislow concluded in 1999 that it is indeed chiral and severely criticized the true versus false chirality nomenclature introduced by Barron, who still disagreed in 2013 with the conclusion of Mislow. Here, it is shown that this controversy comes from an ambiguity in the spinning cone model and that in fact both authors were right. Light is thrown on the true chirality versus false chirality controversy with a very recently published result, which was thus unavailable to both authors: this is a new definition of chirality that encompasses the one introduced by Lord Kelvin at the end of the 19th century.  相似文献   

10.
The influence of chirality in calixarene threading has been studied by exploiting the “superweak anion approach”. In particular, the formation of chiral pseudo[2]rotaxanes bearing a classical stereogenic center in their axle and/or wheel components has been considered. Two kind of pseudo[2]rotaxane stereoadducts, the “endo-chiral” and “exo-chiral” ones, having the stereogenic center of a cationic axle inside or outside, respectively, the calix-cavity of a chiral calixarene were preferentially formed with specifically designed chiral axles by a fine exploitation of the so-called “endo-alkyl rule” and a newly defined “endo-α-methyl-benzyl rule” (threading of a hexaalkoxycalix[6]arene with a directional (α-methyl-benzyl)benzylammonium axle occurs with an endo-α-methyl-benzyl preference). The obtained pseudorotaxanes were studied in solution by 1D and 2D NMR, and in the gas-phase by means of the enantiomer-labeled (EL) mass spectrometry method, by combining enantiopure hosts with pseudoracemates of one deuterated and one unlabeled chiral axle enantiomer. In both instances, there was not a clear enantiodiscrimination in the threading process with the studied host/guest systems. Possible rationales are given to explain the scarce reciprocal influence between the guest and host chiral centers.  相似文献   

11.
Stereoregular, cis–transoidal poly(phenylacetylene)s bearing strongly acidic functional groups as pendants, such as a phosphonic acid and its monoethyl ester and a sulfonic acid, were found to interact with various biomolecules such as peptides, proteins, amino sugars, and carbohydrates in water, and the complexes exhibited characteristic induced circular dichroisms in the ultraviolet–visible region of the polymer backbones, which resulted from the formation of predominantly one-handed helical conformations. On the other hand, the sodium salt of poly[(4-carboxyphenyl)acetylene], bearing a weak acidic carboxy group, showed induced circular dichroisms only in the presence of carbohydrates and some positively charged proteins. The sensitivity of the polymers to the chirality of various biomolecules was also investigated with circular dichroism spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5039–5048, 2006  相似文献   

12.
13.
王文清  刘轶男   《物理化学学报》2004,20(11):1345-1351
利用单晶的中子衍射研究295 K和60 K时丙氨酸对映体的结构特征以及由D到L构型转变的可能性.中子衍射数据揭示了变温过程中产生的晶格扭曲和的扭转. 通过分析宇称破缺能差EPV随二面角及扭角的变化,肯定了D-丙氨酸能量高于L-丙氨酸的结论.降温过程中D-和L-丙氨酸的弱氢键的行为的差异表明,可能是由于电弱相互作用宇称不守恒所引起.丙氨酸中子结构再次证实Cα-H…O氢键的存在.然而,比较295 K和60 K(高于和低于丙氨酸相变温度250 K)的中子衍射结构数据,表明并没有发生D型到L型的构型转化,这意味着Salam相变不是传统意义的结构相变.  相似文献   

14.
15.
16.
Three chiral bicyclic pillar[5]arene derivatives termed as molecular universal joints (MUJs), were synthesized and separated enantiomerically. These MUJs showed temperature-driven chirality switching in certain solvents. Herein, it is demonstrated that temperature-driven chirality switching could also be realized by mixing two miscible organic solvents, in each of which chirality inversion is not accomplishable. Additionally, solvent mixing drastically varied the inversion temperature of the MUJs, for example, from far below zero to room temperature. Moreover, the temperature-driven Sp/Rp to Rp/Sp chirality switching direction could be reversed by the solvent mixing and it was critically controlled by the mixing ratios of the two solvents. These observations allowed precise manipulation of the chirality switching behavior of the MUJs. Such a chirality switching was ascribed to the influences of solvent and temperature on the in–out equilibrium of the side rings, which is delicately controlled by several processes, including the solvation/desolvation and the inclusion/exclusion of the side rings and solvent molecules. Crucially, the solvent mixing introduced new supramolecular processes, in particular the desolvation of solvent molecules from the mixed solvent system and the solvation of the side ring by the mixed solvent, which significantly disturbed the original in–out equilibrium of MUJs and drastically switched the entropy and enthalpy changes of conformational interconversion.  相似文献   

17.
A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene‐based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self‐inclusion and self‐exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox‐triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.  相似文献   

18.
Although helical nanofibrous structures have great influence on cell adhesion, the role played by chiral molecules in these structures on cells behavior has usually been ignored. The chirality of helical nanofibers is inverted by the odd–even effect of methylene units from homochiral l ‐phenylalanine derivative during assembly. An increase in cell adhesion on left‐handed nanofibers and weak influence of cell behaviors on right‐handed nanofibers are observed, even though both were derived from l ‐phenylalanine derivatives. Weak and negative influences on cell behavior was also observed for left‐ and right‐handed nanofibers derived from d ‐phenylalanine, respectively. The effect on cell adhesion of single chiral molecules and helical nanofibers may be mutually offset.  相似文献   

19.
The front cover artwork is provided by Dr Rebecca Walker of the Liquid Crystals Group at the University of Aberdeen. The image is a cartoon depiction of the formation of the heliconical chiral twist-bend nematic phase (N*TB) from its constituent bent molecules. The presence of a single enantiomer of the chiral, lactate-based liquid crystal dimers biases the formation of helices with only one handedness, unlike in the conventional NTB phase, observed for achiral molecules, for which the left- and right-handed helices are doubly degenerate. Read the full text of the Research Article at 10.1002/cphc.202200807 .  相似文献   

20.
Two macrotricyclic ligands composed of two face-to-face octadentate metal chelates were synthesized. These cage-shaped disodium complexes had special recognition ability for various counter anions. Specific chiral dicarboxylates bound to the complexes within the cavity and exhibited chirality induction properties. For instance, N-Boc-Asp dianion strongly induced circular dichroism (CD) signals, but N-Boc-Glu dianion, which is one carbon longer, did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号