首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lanthanide (Ln) oxides and cadmium (Cd) salts as sources of metals provided the first series of luminescent Ln-Cd-organic frameworks, [LnCd(imdc)(SO4)(H2O)3].0.5H2O (Ln = Tb, Eu, Dy, Gd, Er, Yb, Y, Nd, Pr; H3imdc = 4,5-imidazoledicarboxylic acid), in which the Ln atoms are linked by imdc ligands with skew coordination orientation, resulting in novel hetero-metallic-organic frameworks with left-/right-handed helical tubes (L1/R1) and channels (L2/R2) along the b axis.  相似文献   

2.
Xia J  Zhao B  Wang HS  Shi W  Ma Y  Song HB  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2007,46(9):3450-3458
3,5-pyrazoledicarboxylic acid (H3L) reacts with nitrate salts of lanthanide(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) under hydrothermal conditions to form a series of lanthanide polymers 1-9. These nine polymers have the same crystal system of monoclinic, but they exhibit three different kinds of metal-organic framework structures. The complexes {[Ln2(HL)3(H2O)4].2H2O}n (Ln=Pr (1), Nd (2), and Sm (3)) were isostructural and exhibited porous 3D frameworks with a Cc space group. The complexes {[Ln2(HL)3(H2O)3].3H2O}n (Ln=Eu (4), Gd (5), and Tb (6)) were isostructural and built 2D double-decker (2DD) frameworks with a P21/c space group. The complexes {[Ln(HL)(H2L)(H2O)2]}n ((Ln=Dy (7), Ho (8), and Er (9)) were also isostructural and formed 2D monolayer (2DM) frameworks with a P21/n space group. The structure variation from the 3D porous framework to the 2D double-decker to the 2D monolayer is attributed to the lanthanide contraction effect. Notably, six new coordination modes of 3,5-pyrazoledicarboxylic acid were observed, which proved that 3,5-pyrazoledicarboxylic acid may be used as an effective bridging ligand to assemble lanthanide-based coordination polymers. The photophysical and magnetic properties have also been investigated.  相似文献   

3.
Nine novel heterometallic coordination polymers [Ln(2)Ni(Hbidc)(2)(SO(4))(2)(H(2)O)(8)](n) (Ln = Pr (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6), Ho (7), Er (8), Yb (9), H(3)bidc = 1H-benzimidazole-5,6-dicarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, FT-IR, TG analysis and single crystal X-ray diffraction. X-ray analysis revealed that all complexes present almost identical three-dimensional (3D) structures with PtS-type topology. Complexes 1-7 are all isomorphous, and the structure variation of polymers 8 and 9 is induced by the lanthanide contraction effect. In additional, the luminescence properties of complexes 2, 3 and 5-7, and the magnetic properties of complexes 4 and 6-8 were investigated.  相似文献   

4.
SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have been synthesized by the combustion method. The results of XRD indicated that the resulting SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. The spectral properties are measured, and it is found that the excitation peaks of 5d energy levels red shift in nanocrystals in contrast to that in bulk crystals. The mechanism of spectra and energy changes is investigated. The order of the degree of red shift for nano SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) crystals is Pr(3+) > Ce(3+) > Tb(3+), which is in good agreement with our predicted results.  相似文献   

5.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

6.
Five different types of the lanthanide sulfate-carboxylates family, [La(2)(SO(4))(Himdc)(2)(H2O)2] , [Gd(2)(SO(4))(2)(Himdc)(H2O)3].H2O , [Ln(2)(SO(4))(2)(Himdc)(H2O)(3)].H2O (Ln = Gd3a, Eu3b), [Eu(6)Cu(SO(4))(6)(Himdc)(4)(H2O)(14)] , and [Ln(Himc)(SO(4))(H2O)] (Ln = Eu5a, Gd5b, Tb5c, Dy5d, Er5e); H(2)imc = 4-imidazolecarboxylic acid, H(3)imdc = 4,5-imidazoledicarboxylic acid) have been obtained by hydrothermal reactions of Ln(2)O(3), transition metal sulfates and H(3)imdc at 170 degrees C and characterized by means of elemental analyses, IR, TG analysis, luminescence spectroscopy and single crystal X-ray diffraction. The 3D structure of 1 is constructed from alternately linkages of organic {La(Himdc)} layers and inorganic {La(2)O(2)(SO(4))} layers, with the La atoms as hinges. 2 and 3a/3b both contain alternately arranged 1D left- and right-handed helical {Ln(imdc)} chains bridged by SO(4)(2-) anions to form a 3D framework with 1D rectangle-like channels along the b axis. The structural differences of 2 and 3a/3b lie in the linkages of the SO(4)(2-) anions. Complex 4 consists of 2D tubular Eu-sulfate layers pillared by {Cu(Himdc)(2)} units to generate a 3D network. Complexes 5a-5e possess 2D bamboo-raft-like layer structures based on helical tubes. Interestingly, H(2)imc comes from the in-situ decarboxylation of H(3)imdc in the hydrothermal reactions. The luminescence properties of the complexes 3a, 4, 5a 5c, 5d were investigated in solid state at room temperature.  相似文献   

7.
A series of lanthanide and lanthanide-transition metal compounds with isonicotinic acid (Hina) and oxalate ligands have been synthesized under hydrothermal reactions. X-Ray crystal structure analyses reveal that they have a rich structural chemistry. Three distinct structure types were exhibited with decreasing lanthanide radii: [LnCu(ina)(2)(C(2)O(4))].H(2)O (Ln=La 1, Pr 2, Nd 3) for type I, [Ln(ina)(C(2)O(4))(H(2)O)(2)] (Ln=Sm 4, Eu 5, Gd 6) for type II, and [Ln(ina)(C(2)O(4))(0.5)(OH)] (Ln=Tb 7, Dy 8, Er 9) for type III. The structure of type I has a 3d-4f heterometallic structure and consists of 1D channels along the b axis, which filled with guest water molecules. They exhibit a first 3D uninodal eight-connected framework with a unique 3(6).4(18).5(3).6 topology. Type II has 2D Ln-ina-C(2)O(4) 4(4)-nets, the nitrogen donors of the ina ligand are not coordinated to any of the metal ions, inducing the lower dimensional networks. Type III consists of 2D Ln-C(2)O(4) layers pillared by ina ligands to form a pillared-layer framework. The structure evolution is due to the versatile coordination modes of ina and oxalate ligands as well as the lanthanide contraction effect. Notably, the oxalate ligand was in situ synthesized from orotic acid through an oxidation-hydrolysis reaction. The type III materials show high thermal stability; luminescence properties of Nd 3, Sm 4, Eu 5, Tb 7 are also investigated.  相似文献   

8.
Compounds formed from the reaction of N,N,N',N'-tetramethylsuccinamide (TMSA) with trivalent lanthanide salts possessing the poorly coordinating counteranions triflate (CF3SO3-) and perchlorate (ClO4-) have been prepared and examined. Structural features of these Ln-TMSA compounds have been studied in the solid phase by thermogravimetric analysis, infrared spectroscopy, and, in selected cases, by single-crystal X-ray diffraction and in solution by infrared spectroscopy. Eight-coordinate compounds, [Ln(TMSA)4]3+, derived from coordination of four succinamide ligands to the metal ion could be formed with all lanthanides examined (Ln = La, Pr, Nd, Eu, Yb, Lu). Structural analyses by single-crystal X-ray diffraction were performed for the lanthanide triflate salts Ln(C8H16N2O2)4(CF3SO3)3: Ln = La, compound 1, monoclinic, P2(1)/n, a = 11.0952(2) A, b = 19.2672(2) A, c = 24.9759(3) A, beta = 90.637(1) degrees, Z = 4, Dcalcd = 1.586 g cm-3; Ln = Nd, compound 2, monoclinic, C2/c, a = 24.6586(10) A, b = 19.3078(7) A, c = 11.1429(4) A, beta = 90.450(1) degrees, Z = 4, Dcalcd = 1.603 g cm-3; Ln = Eu, compound 3, monoclinic, C2/c, a = 24.4934(2) A, b = 19.3702(1) A, c = 11.1542(1) A, beta = 90.229(1) degrees, Z = 4, Dcalcd = 1.617 g cm-3; Ln = Lu, compound 5, monoclinic, C2/c, a = 24.2435(4) A, b = 19.6141(2) A, c = 11.2635(1) A, beta = 90.049(1) degrees, Z = 4, Dcalcd = 1.626 g cm-3. X-ray analysis was also carried out for the perchlorate salt: Ln = Eu, compound 4, triclinic, P1, a = 10.9611(2) A, b = 14.6144(3) A, c = 15.7992(2) A, alpha = 106.594(1) degrees, beta = 91.538(1) degrees, gamma = 90.311(1) degrees, Z = 2, Dcalcd = 1.561 g cm-3. In the presence of significant amounts of water, 7-coordinate compounds with mixed aquo-TMSA cation structures [Ln(TMSA)3(H2O)]3+ (Ln = Yb) and [Ln(TMSA)2(H2O)3]3+ (Ln = La, Pr, Nd, Eu, Yb) have been isolated with structural determinations by single-crystal X-ray diffraction obtained for the following species: Yb(C8H16N2O2)3(H2O)(CF3SO3)3, compound 6, monoclinic, P2(1)/n, a = 8.9443(3) A, b = 11.1924(4) A, c = 44.2517(13) A, beta = 93.264(1) degrees, Z = 4, Dcalcd = 1.735 g cm-3; Yb(C8H16N2O2)3(H2O)(ClO4)3, compound 7, monoclinic, Cc, a = 19.2312(6) A, b = 11.1552(3) A, c = 19.8016(4) A, beta = 111.4260(1) degrees, Z = 4, Dcalcd = 1.690 g cm-3; Yb(C8H16N2O2)2(H2O)3(CF3SO3)3, compound 8, triclinic, P1, a = 8.6719(1) A, b = 12.2683(2) A, c = 19.8094(3) A, alpha = 75.815(1) degrees, beta = 86.805(1) degrees, gamma = 72.607(1) degrees, Z = 2, Dcalcd = 1.736 g cm-3. Unlike in the analogous nitrate salts, only bidentate binding of the succinamide ligand to the lanthanide metal is observed. IR spectroscopy studies in anhydrous acetonitrile suggest that the solid-state structures of these Ln-TMSA compounds are maintained in solution.  相似文献   

9.
Two systems, Ln/Sn/Se/en and Ln/Sn/Se/dien, were investigated under solvothermal conditions, and novel lanthanide selenidostannates [{Ce(en)(4)}(2)(μ-Se(2))]Sn(2)Se(6) (1a), [{Ln(en)(3)}(2)(μ-OH)(2)]Sn(2)Se(6) (Ln = Pr(1b), Nd(1c), Gd(1d); en = ethylenediamine), [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) (Ln = Ce(2a), Nd(2b)), and [Hdien][Gd(dien)(2)(μ-SnSe(4))] (2c) (dien = diethylenetriamine) were prepared and characterized. Two structural types of lanthanide selenidostannates were obtained across the lanthanide series in both systems. In the Ln/Sn/Se/en system, two types of binuclear lanthanide complex cations [Ce(2)(en)(8)(μ-Se(2))](4+) and [{Ln(en)(3)}(2)(μ-OH)(2)](4+) (Ln = Pr, Nd, Gd) were formed depending on the Ln(3+) ions. The complex cations are compensated by the [Sn(2)Se(6)](4-) anions. In the Ln/Sn/Se/dien system, coordination polymer [{Ln(dien)(2)}(4)(μ(4)-Sn(2)Se(9))(μ-Sn(2)Se(6))](∞) and ionic complex [Hdien][Gd(dien)(2)(μ-SnSe(4))] are obtained along the lanthanide series, among which the μ(4)-Sn(2)Se(9), μ-Sn(2)Se(6) and μ-SnSe(4) ligands to the Ln(3+) ions were observed. The formation of title complexes shows the effects of lanthanide metal size and amino ligand denticity on the lanthanide selenidostannates. Complexes 1a-2c exhibit semiconducting properties with band gaps between 2.08 and 2.48 eV.  相似文献   

10.
Li SM  Zheng XJ  Yuan DQ  Ablet A  Jin LP 《Inorganic chemistry》2012,51(3):1201-1203
Five novel 3D heterometallic lanthanide-zinc-organic frameworks, [H(H(2)O)(8)][LnZn(4)(imdc)(4)(Him)(4)] [Ln = La (1), Pr (2), Eu (3), Gd (4), Tb (5); H(3)imdc = 4,5-imidazoledicarboxylic acid; Him = imidazole], were synthesized via an in situ hydrothermal reaction, and tunable luminescence from yellow to white was obtained through the doping of Eu and Tb ions in the La-Zn framework.  相似文献   

11.
The syntheses, crystal structures and magnetic studies are reported for a series of Ln(4) clusters formulated as Ln(4)(μ(3)-OH)(2)(php)(2)(OAc)(6)(H(2)O)(2)]·4MeOH·nH(2)O (Ln = Gd (1), Tb (2), Dy (3) (n = 2) and Ho (4) (n = 0); H(2)php = 2,6-(picolinoylhydrazone)pyridine). The overall metal core of each cluster is comprised of two edge-sharing triangular Ln(3) units linked by μ(3)-OH bridges. Direct-current (dc) magnetic susceptibility studies reveal that the Ln(III) ions are very weakly coupled in all four compounds. Alternating-current (ac) magnetic susceptibility studies for 3 indicate that field-induced slow relaxation phenomenon occurs for this compound.  相似文献   

12.
By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (), Ce (), Pr (), Nd (), Sm (), Eu (), Gd (), Tb (); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(iii) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.  相似文献   

13.
Seven isomorphous 1D chain Ln3+ complexes Ln(BTA)(HCOO)(H2O)3 (Ln = Pr (1), Gd (2), Eu (3), Tb (4) Dy (5), Er (6) and Yb (7)), and two formate coordinating and bridging 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr (8) and Nd (9)) have been synthesized and characterized by single crystal X-ray diffraction analysis. Although the Ln3+ ions in 1-7 have different radius, the trivalent lanthanide ions in 1-7 show the same coordinated environment. The well-defined single crystal structures of 8 and 9 are first samples for formate-bridged Ln3+ metallic complexes. The luminescent properties of solid samples of 2-5 at room temperature and the magnetic property of 2 have been also reported and discussed in this paper.  相似文献   

14.
王曦  韩义德  郝素琴  于吉红  徐如人 《化学学报》2012,70(13):1496-1500
利用微波辅助合成法,成功地合成出一系列新颖的稀土亚磷酸盐GdxTb2-x(HPO3)3(H2O)2(0≤x≤2).X-射线粉末衍射分析结果表明,它们为同构的化合物.对Gd2(HPO3)3(H2O)2进行X-射线单晶衍射分析得出,该化合物结晶于P21/c空间群,晶胞参数为a=6.9124(6),b=12.8891(12),c=12.3692(11),β=100.1520(10)°.Gd2(HPO3)3(H2O)2是由GdO7多面体,GdO8多面体和[HPO3]假四面体通过共用氧原子相互连接而成的三维骨架.Gd2(HPO3)3(H2O)2和Tb2(HPO3)3(H2O)2的荧光光谱分别显示Gd3+和Tb3+的特征发光.Gd/Tb掺杂的样品中存在Gd3+-Tb3+的能量传递,它们的发光显示Tb3+的绿光发射(5D4→7F3-6),并且5D4→7F3跃迁的强度随着Tb3+掺杂量的增大而增强,这表明Gd2(HPO3)3(H2O)2引入不同浓度的发光中心Tb3+之后可以作为绿光发光材料.磁性研究表明,Gd2(HPO3)3(H2O)2中存在极弱的反铁磁相互作用.  相似文献   

15.
A series of low-melting-point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C(2) mim)(3) [Ln(dcnm)(6)] (1?Ln; 1?Ln=1?La, 1?Ce, 1?Pr, 1?Nd), (C(2) C(1) mim)(3) [Pr(dcnm)(6)] (2?Pr), (C(4) C(1) pyr)(3) [Ce(dcnm)(6)] (3?Ce), (N(1114))(3) [Ln(dcnm)(6)] (4?Ln; 4?Ln=4?La, 4?Ce, 4?Pr, 4?Nd, 4?Sm, 4?Gd), and (N(1112OH) )(3) [Ce(dcnm)(6)] (5?Ce) (C(2) mim=1-ethyl-3-methylimidazolium, C(2) C(1) mim=1-ethyl-2,3-dimethylimidazolium, C(4) C(1) py=N-butyl-4-methylpyridinium, N(1114) =butyltrimethylammonium, N(1112OH) =2-(hydroxyethyl)trimethylammonium=choline). X-ray crystallography was used to determine the structures of complexes 1?La, 2?Pr, and 5?Ce, all of which contain [Ln(dcnm)(6)](3-) ions. Complexes 1?Ln and 2?Pr were all ionic liquids (ILs), with complex 3?Ce melting at 38.1?°C, the lowest melting point of any known complex containing the [Ln(dcnm)(6)](3-) trianion. The ammonium-based cations proved to be less suitable for forming ILs, with complexes 4?Sm and 4?Gd being the only salts with the N(1114) cation to have melting points below 100?°C. The choline-containing complex 5?Ce did not melt up to 160?°C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

16.
Jiang HL  Ma E  Mao JG 《Inorganic chemistry》2007,46(17):7012-7023
Solid-state reactions of lanthanide(III) oxide (and/or lanthanide(III) oxychloride), MoO3 (or WO3), and TeO2 at high temperature lead to eight new luminescent compounds with four different types of structures, namely, Ln2(MoO4)(Te4O10) (Ln = Pr, Nd), La2(WO4)(Te3O7)2, Nd2W2Te2O13, and Ln5(MO4)(Te5O13)(TeO3)2Cl3 (Ln = Pr, Nd; M = Mo, W). The structures of Ln2(MoO4)(Te4O10) (Ln = Pr, Nd) feature a 3D network in which the MoO4 tetrahedra serve as bridges between two lanthanide(III) tellurite layers. La2(WO4)(Te3O7)2 features a triple-layer structure built of a [La2WO4]4+ layer sandwiched between two Te3O72- anionic layers. The structure of Nd2W2Te2O13 is a 3D network in which the W2O108- dimers were inserted in the large tunnels of the neodymium(III) tellurites. The structures of Ln5(MO4)(Te5O13)(TeO3)2Cl3 (Ln = Pr, Nd; M = Mo, W) feature a 3D network structure built of lanthanide(III) ions interconnected by bridging TeO32-, Te5O136-, and Cl- anions with the MO4 (M = Mo, W) tetrahedra capping on both sides of the Ln4 (Ln = Pr, Nd) clusters and the isolated Cl- anions occupying the large apertures of the structure. Luminescent studies indicate that Pr2(MoO4)(Te4O10) and Pr5(MO4)(Te5O13)(TeO3)2Cl3 (M = Mo, W) are able to emit blue, green, and red light, whereas Nd2(MoO4)(Te4O10), Nd2W2Te2O13, and Nd5(MO4)(Te5O13)(TeO3)2Cl3 (M = Mo, W) exhibit strong emission bands in the near-IR region.  相似文献   

17.
Two lanthanide tetrafluoro-p-phthalate (L(2-)) complexes, Ln(L)(1.5)·DMF·H(2)O (Ln = Pr(3+) (1), Nd(3+) (2)), were synthesized using pyridine as a base. The compounds were found to be isostructural, and the structure of 1 has been determined by single crystal X-ray diffraction (monoclinic, space group C2, a = 22.194(2) ?, b = 11.4347(12) ?, c = 11.7160(12) ?, β = 94.703(2)°, V = 2963.3(5) ?(3), Z = 4). The crystal structure of 1 consists of dinuclear Pr(3+) units, which are connected by tetrafluoro-p-phthalate, forming separate 2D polymeric layers. The Ln(3+) ions in the dinuclear Ln(2) units are linked by two μ-O atoms and by two bridging O-C-O groups. The structure is porous with DMF and water molecules located between layers. Non-coordinated DMF molecules occupy about 27% of the unit cell volume. A systematic analysis of reported structures of Ln(III) polymers with p-phthalate and its derivatives shows that the ca. known 60 structures can be divided into six possible structural types depending on the presence of certain structural motifs. The magnetic properties of compounds 1 and 2 were studied. The dependence of χ(M)T on T (where χ(M) is magnetic susceptibility per dinuclear lanthanide unit) for 1 and 2 was simulated using two different models, based on: (i) the Hamiltonian ? = Δ?(z)(2)+ μ(B)g(J)H?, which utilises an axial splitting parameter Δ and temperature-independent paramagnetism (tip) and (ii) crystal field splitting. It was found that both models gave satisfactory fits, indicating that the Ln-Ln exchange interactions are small and the symmetry of the coordination environment is the main factor influencing the magnetic properties of these compounds.  相似文献   

18.
Liu B  Li BL  Li YZ  Chen Y  Bao SS  Zheng LM 《Inorganic chemistry》2007,46(21):8524-8532
Two types of lanthanide diruthenium phosphonate compounds, based on the mixed-valent metal-metal bonded paddlewheel core of Ru(2)(hedp)(2)(3-) [hedp = 1-hydroxyethylidenediphosphonate, CH(3)C(OH)(PO(3))(2)], have been prepared with the formulas Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)2].5.5H(2)O (1.Ln, Ln = La, Ce) and Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)(2)].8H(2)O (2.Ln, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er). In both types, each Ru(2)(hedp)2(H2O)23- unit is linked by four Ln(3+)ions through four phosphonate oxygen (OP) atoms and vice versa. The geometries of the {LnO(P4)} group, however, are different in the two cases. In 1.Ln, the geometry of {LnO(P4)} is closer to a distorted plane, and thus a square-grid layer structure is found. In 2.Ln, the geometry of {LnO(P4)} is better described as a distorted tetrahedron; hence, a unique PtS-type open-framework structure is observed. The channels generated in structures 2.Ln are filled with water aggregates with extensive hydrogen-bond interactions. The magnetic and electrochemical properties are also investigated.  相似文献   

19.
Li Z  Zhu G  Guo X  Zhao X  Jin Z  Qiu S 《Inorganic chemistry》2007,46(13):5174-5178
A series of microporous lanthanide metal-organic frameworks [Ln(BTC)(DMF)(2) x H(2)O, Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6); DMF = N,N'-dimethylformamide] with 4 x 4 x 4 x 6 x 6 x 8 topology, which is very common in the zeolite topologies, have been synthesized under mild conditions. The single-crystal X-ray diffraction analysis reveals that they exhibit the same three-dimensional (3D) architecture and crystallize in monoclinic symmetry space group C2/c. Organic and inorganic four-connected nodes link each other to form a 3D open framework. The framework contains approximate 13 Angstrom x 7 Angstrom rectangle channels along the [1,1,0] and [1,-1,0] directions, respectively. The luminescent properties of these complexes have been studied, and complex 1 shows a Tb(3+) characteristic emission in the range of 450-650 nm at room temperature. Complexes 1-5 exhibit antiferromagnetic interaction between Ln(3+) ions. The water sorption isotherm shows that about 15 water molecules per unit cell can be adsorbed into the micropores of dehydrated complex 4.  相似文献   

20.
Eight novel lanthanide complexes: {Ln(TDA)1.5(H2O)2}n (Ln = Pr(1a), Nd(2a)) and {Ln(TDA)(Ac)(H2O)}n (Ln = Pr(1), Nd(2), Eu(3), Gd(4), Tb(5), Dy(6); TDA = Thiophene-2,5-dicarboxylic acid anion) have been constructed by hydrothermal reaction. Structural analyses reveal that complexes 1a and 2a belong to the space group C2/c, exhibiting three-dimensional (3D) frameworks. Complexes 1-6 with P21/c space group were prepared in the presence of excessive ammonium acetate, giving rise to interesting 3D frameworks different from those of 1a and 2a. Magnetic property studies of 4-6 reveal the weak antiferromagnetic interaction exists between adjacent Gd3+ in 4. The complex 6 displays rather rare slow magnetization relaxation behavior in 3D frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号