首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43–57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.  相似文献   

2.
The nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths. Grown polymer brushes with short OEGn side chains suppressed protein adsorption significantly more than the deposited assemblies of short OEGn chains, and this was attributed to higher surface coverage by the brushes. Cell adhesion studies confirmed that OEGn-containing polymer brushes are particularly effective in preventing nonspecific adhesion. Studies of protein adsorption and cell localization carried out with specific ligands on surfaces patterned demonstrated the potential of these surface-tethered polymer brushes for the formation of micro- and nanoscale devices.  相似文献   

3.
We use patterned poly(acrylic acid) (PAA) polymer brushes to explore the effects of surface chemistry and topography on cell-surface interactions. Most past studies of surface topography effects on cell adhesion have focused on patterned feature sizes that are larger than the dimensions of a cell, and PAA brushes have been characterized as cell repellent. Here we report cell adhesion studies for RBL mast cells incubated on PAA brush surfaces patterned with a variety of different feature sizes. We find that when patterned at subcellular dimensions on silicon surfaces, PAA brushes that are 30 or 15 nm thick facilitate cell adhesion. This appears to be mediated by fibronectin, which is secreted by the cells, adsorbing to the brushes and then engaging cell-surface integrins. The result is detectable accumulation of plasma membrane within the brushes, and this involves cytoskeletal remodeling at the cell-surface interface. By decreasing brush thickness, we find that PAA can be 'tuned' to promote cell adhesion with down-modulated membrane accumulation. We exemplify the utility of patterned PAA brush arrays for spatially controlling the activation of cells by modifying brushes with ligands that specifically engage IgE bound to high-affinity receptors on mast cells.  相似文献   

4.
Yoon SH  Chang J  Lin L  Mofrad MR 《Lab on a chip》2011,11(20):3555-3562
The dynamic nature of cell adhesion and detachment, which plays a critical role in a variety of physiological and pathological phenomena, still remains unclear. This motivates the pursuit of controllable manipulation of cell adhesion and detachment for a better understanding of cellular dynamics. Here we present an addressable, multifunctional, and reusable platform, termed the biological breadboard (BBB), for spatiotemporal manipulation of cell adhesion and detachment at cellular and subcellular levels. The BBB, composed of multiple gold electrodes patterned on a Pyrex substrate, is surface-modified with arginine-glycine-aspartic acid terminated thiol (RTT) and polyethylene glycol (PEG) to achieve a cell-adhesive surface on the gold electrodes and a cell-resistive surface on the Pyrex substrate, respectively. Cell adhesion is regulated by the steric repulsion of PEG chains, while cell detachment is controlled by the reductive desorption of a gold-thiol self-assembled monolayer (SAM) at an activation potential of -0.90 to -1.65 V. Experimental characterizations using NIH 3T3 fibroblasts are presented to demonstrate the utility of our device.  相似文献   

5.
Porous silicon (pSi) surfaces were chemically micropatterned through a combination of photolithography and surface silanization reactions. This patterning technique produces discretely defined regions on a pSi surface functionalized with a specific chemical functionality, and the surrounding surface displays a completely different functionality. The generated chemical patterns were characterized by a combination of IR microscopy and the conjugation of two different fluorescent organic dyes. Finally, the chemically patterned pSi surface was used to direct the attachment of neuronal cells to the surface. This patterning strategy will be useful for the development of high-throughput platforms for investigating cell behavior.  相似文献   

6.
The creation of nonfouling surfaces is one of the major prerequisites for microdevices for biomedical and analytical applications. Poly(ethylene glycol) (PEG), a water soluble, nontoxic, and nonimmunogenic polymer has the unique ability of reducing nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. The performance of these modified surfaces for long-term biomedical applications largely depends on the stability of these PEG films. To this end, we have investigated the stability of covalently coupled ultrathin PEG films on silicon in aqueous in vivo like conditions for a period of 4 weeks. The PEG-modified silicon substrates were incubated in PBS (37 degrees C, pH 7.4, 5% CO2) for different periods of time and then characterized using the techniques of ellipsometry, contact angle measurement, X-ray photoelectron spectroscopy, and atomic force microscopy. The ability of the PEG-modified surfaces to control protein fouling was examined by protein adsorption studies using fluorescein isothiocyanate labeled bovine serum albumin and ellipsometry. Furthermore, the ability of these films to control fibroblast adhesion was examined. Studies suggest that the PEG-modified surfaces retain their protein and cell repulsive nature even though the PEG film thickness decreases for the period of investigation.  相似文献   

7.
We report a general procedure to prepare functional organic thin films for biological assays on oxide surfaces. Silica surfaces were functionalized by self-assembly of an amine-terminated silane film using both vapor- and solution-phase deposition of 3'-aminopropylmethyldiethoxysilane (APMDES). We found that vapor-phase deposition of APMDES under reduced pressure produced the highest quality monolayer films with uniform surface coverage, as determined by atomic force microscopy (AFM), ellipsometry, and contact angle measurements. The amine-terminated films were chemically modified with a mixture of carboxylic acid-terminated poly(ethylene glycol) (PEG) chains of varying functionality. A fraction of the PEG chains (0.1-10 mol %) terminated in biotin, which produced a surface with an affinity toward streptavidin. When used in pseudo-sandwich assays on waveguide platforms for the detection of Bacillus anthracis protective antigen (PA), these functional PEG surfaces significantly reduced nonspecific binding to the waveguide surface while allowing for highly specific binding. Detection of PA was used to validate these films for sensing applications in both buffer and complex media. Ultimately, these results represent a step toward the realization of a robust, reusable, and autonomous biosensor.  相似文献   

8.
Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity was immobilized onto PEG based polymeric coating via the active p-nitrophenyloxycarbonyl group. The adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) onto surface modified either by REDV end-tethered polyethylene glycol (PEG) or by the complex of free PEG and REDV were investigated to understand the synergic action of nonspecific resistance of PEG and specific recognitions of REDV. Cell culture results indicated that the surfaces end tethered by REDV peptide via PEG "spacer" (n=1, 6, 10) exhibited slight EC selectivity and showed small difference between different lengths of PEG chain. Both separate-culture and co-culture of HUVECs and HASMCs indicated that the introducing of free PEG into REDV tethered surface inhibited HASMCs adhesion significantly and remained a high level of HUVECs growth. Furthermore, the surface with short free PEG chain (n=6) was much more effective to enhance ECs selectivity than long EG chain (n=23). The combination of nonspecific resistance of short free PEG and the ECs selectivity of REDV peptide presents much better ability to enhance the competitive adhesion of HUVECs over HASMCs.  相似文献   

9.
We show that highly enhanced and selective adhesion can be achieved between surfaces patterned with complementary microchannel structures. An elastic material, poly(dimethylsiloxane) (PDMS), was used to fabricate such surfaces by molding into a silicon master with microchannel profiles patterned by photolithography. We carried out adhesion tests on both complementary and mismatched microchannel/micropillar surfaces. Adhesion, as measured by the energy release rate required to propagate an interfacial crack, can be enhanced by up to 40 times by complementary interfaces, compared to a flat control, and slightly enhanced for some special noncomplementary samples, despite the nearly negligible adhesion for other mismatched surfaces. For each complementary surface, we observe defects in the form of visible striations, where pillars fail to insert fully into the channels. The adhesion between complementary microchannel surfaces is enhanced by a combination of a crack-trapping mechanism and friction between a pillar and channel and is attenuated by the presence of defects.  相似文献   

10.
Hyperbranching poly(allylamine) (PAAm) and poly(ethylene glycol) (PEG) on silicon and its effect on protein adhesion was investigated. Hyperbranching involves sequential grafting of polymers on a surface with one of the components having multiple reactive sites. In this research, PAAm provided multiple amines for grafting PEG diacrylate. Current methodologies for generating PEG surfaces include PEG-silane monolayers or polymerized PEG networks. Hyperbranching combines the nanoscale thickness of monolayers with the surface coverage afforded by polymerization. A multistep approach was used to generate the silicon-supported hyperbranched polymers. The silicon wafer surface was initially modified with a vinyl silane followed by oxidation of the terminal vinyl group to present an acid function. Carbodiimide activation of the surface carboxyl group allowed for coupling to PAAm amines to form the first polymer layer. The polymers were hyperbranched by grafting alternating PEG and PAAm layers to the surface using Michael addition chemistry. The alternating polymers were grafted up to six total layers. The substrates remained hydrophilic after each modification. Static contact angles for PAAm (32-44 degrees) and PEG (33-37 degrees) were characteristic of the corresponding individual polymer (30-50 degrees for allylamine, 34-42 degrees for PEG). Roughness values varied from approximately 1 to 8 nm, but had no apparent affect on protein adhesion. Modifications terminating with a PEG layer reduced bovine serum albumin adhesion to the surface by approximately 80% as determined by ELISA and radiolabel binding studies. The hyperbranched PAAm and PEG surfaces described in this paper are nanometer-scale, multilayer films capable of reducing protein adhesion.  相似文献   

11.
Motivated by the technological possibilities of electronics and sensors based on gold nanoparticles (Au NPs), we investigate the selective assembly of such NPs on electrodes via DNA hybridization. Protocols are demonstrated for maximizing selectivity and coverage using 15mers as the active binding agents. Detailed studies of the dependences on time, ionic strength, and temperature are used to understand the underlying mechanisms and their limits. Under optimized conditions, coverage of Au NPs on Au electrodes patterned on silicon dioxide (SiO2) substrates was found to be approximately 25-35%. In all cases, Au NPs functionalized with non-complementary DNA show no attachment and essentially no nonspecific adsorption is observed by any Au NPs on the SiO2 surfaces of the patterned substrates. DNA-guided assembly of multilayers of NPs was also demonstrated and, as expected, found to further increase the coverage, with three deposition cycles resulting in a surface coverage of approximately 60%.  相似文献   

12.
In this paper we describe a method for creating multifunctional glass surfaces presenting discrete patches of different proteins on an inert PEG-functionalized background. Microcontact printing is used to stamp the substrate with octadecyltrichlorosilane to define the active regions. The substrate is then back-filled with PEG-silane {[[2-methoxypoly(ethyleneoxy)]propyl]trimethoxysilane} to define passive regions. A microfluidics device is subsequently affixed to the substrate to deliver proteins to the active regions, with as many channels as there are proteins to be patterned. Examples of trifunctional surfaces are given which present three terminating functional groups, i.e., protein 1, protein 2, and PEG. These surfaces should be broadly useful in biological studies, as patch size is well established to influence cell viability, growth, and differentiation. Three examples of cellular interactions with the surfaces are demonstrated, including the capture of cells from a single cell suspension, the selective sorting of cells from a mixed suspension, and the adhesion of cells to ligand micropatches at critical shear stresses. Within these examples, we demonstrate that the patterned immobilized proteins are active, as they retain their ability to interact with either antibodies in solution or receptors presented by cells. When appropriate (e.g., for E-selectin), proteins are patterned in their physiological orientations using a sandwich immobilization technique, which is readily accommodated within our method. The protein surface densities are highly reproducible in the patches, as supported by fluorescence intensity measurements. Potential applications include biosensors based on the interaction of cells or of marker proteins with protein patches, fundamental studies of cell adhesion as a function of patch size and shear stress, and studies of cell differentiation as a function of surface cues.  相似文献   

13.
We describe a method to selectively position carbon nanotubes on Al2O3 and HfO2 surfaces. The method exploits the selective binding of alkylphosphonic acids to oxide surfaces with large isoelectric points (i.e. basic rather than acidic surfaces). We have patterned oxide surfaces with acids using both microcontact printing and conventional lithography. With proper choice of the functional end group (e.g., -CH3 or -NH2), nanotube adhesion to the surface can be either prevented or enhanced.  相似文献   

14.
There is a great need to improve the biocompatibility of silicon‐based lab‐on‐chip substrate materials for reliable quantitative analysis of biological solutions. These advanced microdevice surfaces need not only be biocompatible but also have surfaces of defined wettability characteristics. The inhibition of biomolecular activity due to microdevice surface interaction is common and can result in inaccurate results or decreased reaction yields. In this work we investigate different techniques for the chemical functionalization of oxidized silicon (SiOx) surfaces in order to: (i) obtain defined hydrophobic/hydrophilic surfaces; and (ii) increase the efficiency of performing Real‐Time Polymerase Chain Reaction (PCR) on a silicon‐based lab‐on‐chip. Silicon oxide surfaces are functionalized by grafting alkylic chain silanes and poly(ethylene glycol) (PEG) chains to the surfaces, rendering them hydrophobic or hydrophilic. Functionalized surfaces are characterized through contact angle and atomic force microscopy (AFM) measurements, showing stable hydrophobic surfaces with contact angles of 69–78° and layer thicknesses of 11–15 Å and hydrophilic surfaces displaying contact angles of 5–6° and thicknesses of 22–52 Å. PCR experiments carried out directly on bare silicon oxide lab‐on‐chip surfaces show low yields of DNA amplification. Hydrophobic surfaces decrease the inhibition of PCR. Hydrophilic surfaces are a major improvement on the bare silicon oxide exhibiting the same maximum reaction yield as obtained with a standard thermocycler. We have found that the best results are associated with PEG modified surfaces, which prove very suitable for the fabrication of reliable PCR silicon lab‐on‐chips. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The uncontrolled accumulation of biological materials on the surface of medical devices through protein adsorption or cell adhesion causes adverse biological reactions in the living host system, leading to complications. In this study, poly(ethylene glycol) (PEG) is successfully grafted onto polyurethane (PU) surfaces by using a new strategy through a simple and efficient transurethanization reaction. The PEG hydroxyl group is deprotonated and then reacted with the PU surface to provide antiadhesive hydrophilic surfaces in a single step. Surface analysis techniques proved the grafting to be efficient and the formation of a hydrophilic polymeric layer at the surface of PU. Biological assays showed that the surface modification induced lower protein adsorption, cell, platelet, and bacterial adhesion than untreated surfaces, showing a potential for biomedical applications.  相似文献   

16.
This paper describes a new class of salt-responsive poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) on top of polyelectrolyte multilayer (PEMs) films. PEM surfaces with poly(diallyldimethylammonium chloride) as the topmost layer are chemically patterned by microcontact printing (muCP) oligomeric PEG molecules with an activated carboxylic acid terminal group (m-dPEG acid). The resistive m-d-poly(ethylene glycol) (m-dPEG) acid molecules on the PEMs films were subsequently removed from the PEM surface with salt treatment, thus converting the nonadhesive surfaces into adhesive surfaces. The resistive PEG patterns facilitate the directed deposition of various macromolecules such as polymers, dyes, colloidal particles, proteins, liposomes, and nucleic acids. Further, these PEG patterns act as a universal resist for different types of cells (e.g., primary cells, cell lines), thus permitting more flexibility in attaching a wide variety of cells to material surfaces. The patterned films were characterized by optical microscopy and atomic force microscopy (AFM). The PEG patterns were removed from the PEM surface at certain salt conditions without affecting the PEM films underneath the SAMs. Removal of the PEG SAMs and the stability of the PEM films underneath it were characterized with ellipsometry and optical microscopy. Such salt- and pH-responsive surfaces could lead to significant advances in the fields of tissue engineering, targeted drug delivery, materials science, and biology.  相似文献   

17.
A new biomimetic strategy for modification of biomaterial surfaces with poly(ethylene glycol) (PEG) was developed. The strategy exploits the adhesive characteristics of 3,4-dihydroxyphenylalanine (DOPA), an important component of mussel adhesive proteins, to anchor PEG onto surfaces, rendering the surfaces resistant to cell attachment. Linear monomethoxy-terminated PEGs were conjugated either to a single DOPA residue (mPEG-DOPA) or to the N-terminus of Ala-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-DOPA-Lys (mPEG-MAPD), a decapeptide analogue of a protein found in Mytilus edulis adhesive plaques. Gold and titanium surfaces were modified by adsorption of mPEG-DOPA and mPEG-MAPD from solution, after which surface analysis by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy confirmed the presence of immobilized PEG on the surface. The ability of modified surfaces to resist cell attachment was examined by culturing 3T3 fibroblasts on the surfaces for up to 14 days. Quantitative image analysis revealed that cell adhesion to mPEG-DOPA and mPEG-MAPD modified surfaces decreased by as much as 98% compared to control surfaces. Modified Ti surfaces exhibited low cell adhesion for up to 2 weeks in culture, indicating that the nonfouling properties of mPEG-DOPA and mPEG-MAPD treated surfaces persist for extended periods of time. This strategy paradoxically exploits the strong fouling characteristics of MAP analogues for antifouling purposes and may be broadly applied to medical implants and diagnostics, as well as numerous nonmedical applications in which the minimization of surface fouling is desired.  相似文献   

18.
A process to immobilize the enzyme glucose oxidase on SiO2 surfaces for the realization of integrated microbiosensors was developed. The sample characterization was performed by monitoring, step by step, oxide activation, silanization, linker molecule (glutaraldehyde) deposition, and enzyme immobilization by means of XPS, AFM, and contact angle measurements. The control of the environment during the procedure, to prevent silane polymerization, and the use of oxide activation to obtain a uniform enzyme layer are issues of crucial importance. The correct protocol application gives a uniform layer of the linker molecule and the maximum sample surface coverage. This result is fundamental for maximizing the enzyme bonding sites on the sample surface and achieving the maximum surface coverage. Thin SiO2 layers thermally grown on a Si substrate were used. The XPS Si 2p signal of the substrate was monitored during immobilization. Such a signal is not completely shielded by the thin oxide layer and it is fully suppressed after the completion of the whole protocol. A power spectral density analysis on the AFM measurements showed the crucial role of both the oxide activation and the intermediate steps (silanization and linker molecule deposition) to obtain uniform immobilized enzyme coverage. Finally, enzymatic activity measurements confirmed the suitability of the optimized protocol.  相似文献   

19.
Self-assembled monolayers (SAMs) of alkanephosphonic acids with chain lengths between 8 and 18 carbon units were formed on thin films of indium tin oxide (ITO) sputter-deposited on silicon substrates with 400 nm thermally grown SiO(2). The silicon substrates, while not intended for use in near-IR or visible optics applications, do provide smooth surfaces that permit systematic engineering of grain size and surface roughness as a function of the sputter pressure. Argon sputter pressures from 4 to 20 mTorr show systematic changes in surface morphology ranging from smooth, micrometer-sized grain structures to <50 nm grains with 3× higher surface roughness. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments are conducted for alkanephosphonic acids deposited on these wide range of ITO surfaces to evaluate the effects of these morphological features on monolayer ordering. Results indicate that long-chain SAMs are more highly ordered, and have a smaller tilt angle, than short-chain SAMs. Surprisingly, the 1-octadecyl phosphonic acids maintain their order as the lateral grain dimensions of the ITO surface shrink to ~50 nm. It is only when the ITO surface roughness becomes greater than the SAM chain length (~15 ?) that SAMs are observed to become relatively disordered.  相似文献   

20.
利用溶剂-非溶剂法(SNS)制备表面具有微孔图案的聚乳酸(PLA)膜和聚苯乙烯(PS)膜,并以微孔PS膜为模板,构建表面具有微岛图案的PLA膜.以此为基础,对所制备的微图案表面对PLA膜亲/疏水性及成骨细胞粘附与增殖性能的影响进行研究.结果显示微图案的存在显著增强了PLA膜的表面疏水性(水接触角90°);成骨细胞在微图案表面具有良好的铺展性,其黏附数量明显高于光滑PLA膜,但细胞的生长曲线相对较平缓,显示微图案表面虽有利于细胞在PLA膜表面的粘附与铺展,但对促进细胞的增殖无贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号