首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of mercury sorption products in model systems using appropriate in situ molecular-scale probes can provide detailed information on the modes of sorption at mineral/water interfaces. Such studies are essential for assessing the influence of sorption processes on the transport of Hg in contaminated natural systems. Macroscopic uptake of Hg(II) on goethite (alpha-FeOOH), gamma-alumina (gamma-Al(2)O(3)), and bayerite (beta-Al(OH)(3)) as a function of pH has been combined with Hg L(III)-edge EXAFS spectroscopy, FTIR spectroscopy, and bond valence analysis of possible sorption products to provide this type of information. Macroscopic uptake measurements show that Hg(II) sorbs strongly to fine-grained powders of synthetic goethite (Hg sorption density Gamma=0.39-0.42 micromol/m(2)) and bayerite (Gamma=0.39-0.44 micromol/m(2)), while sorbing more weakly to gamma-alumina (Gamma=0.04-0.13 micromol/m(2)). EXAFS spectroscopy on the sorption samples shows that the dominant mode of Hg sorption on these phases is as monodentate and bidentate inner-sphere complexes. The mode of Hg(II) sorption to goethite was similar over the pH range 4.3-7.4, as were those of Hg(II) sorption to bayerite over the pH range 5.1-7.9. Conversion of the gamma-Al(2)O(3) sorbent to a bayerite-like phase in addition to the apparent reduction of Hg(II) to Hg(I), possibly by photoreduction during EXAFS data collection, resulted in enhanced Hg uptake from pH 5.2-7.8 and changes in the modes of sorption that correlate with the formation of the bayerite-like phase. Bond valence calculations are consistent with the sorption modes proposed from EXAFS analysis. EXAFS analysis of Hg(II) sorption products on a natural Fe oxyhydroxide precipitate and Al/Si-bearing flocculent material showed sorption products and modes of surface attachment similar to those for the model substrates, indicating that the model substrates are useful surrogates for the natural sediments.  相似文献   

2.
Ferrocyanide (Fe(CN)6(4-)) adsorption onto gamma-alumina ( gamma-Al2O3(s) ) and gibbsite (Al(OH)3(s)) was investigated over a wide pH range and at various solid loadings. Batch experiments were performed using 100-ml solutions (I = 0.01 M NaCl) dosed with 1.0 mgl(-1) Fe(CN)6(4-) as CN. Equilibrium adsorption-pH edges were developed for 0.3, 0.6, 1.2, and 2.0 gl(-1) gamma-Al(2)O3(s) and 25 gl(-1) Al(OH)3(s). Ferrocyanide adsorption increased as pH decreased, consistent with the general pH dependence for adsorption of anions onto oxide minerals. Ferrocyanide adsorption onto Al(OH)3(s) was approximately 300 times lower than onto gamma-Al(2)O3(s) on a unit weight basis due to the higher surface reactivity of the gamma-Al(2)O3(s). Ferrocyanide adsorption onto gamma-Al(2)O3(s) was significantly greater than has been reported for goethite (FeOOH(s)), and both gamma-Al(2)O3(s) and FeOOH(s) adsorbed ferrocyanide to a greater extent than Al(OH)3(s) . The investigation showed that ferrocyanide can adsorb significantly onto aluminum oxides spanning a range of crystallinity and properties, with the extent of adsorption highly dependent on pH, the solid crystalline structure, and associated surface reactivity.  相似文献   

3.
Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.  相似文献   

4.
A novel technique for examining metal-ion interactions at the solid-water interface is introduced. Planar oxides, flat, thin coatings of uniform thickness created on a metal support, have been constructed as useful analogs for investigating metal-solid interactions under a variety of conditions. XPS and ToF/SIMS results from sorption studies at pH 6.0 show that the sorption behavior of Pb on each phase is similar with Pb binding preferentially to the bulk gamma-Al(2)O(3). This may be due to the presence of defect sites on the bulk oxides, the preferential exposure of a specific crystallographic plane in the planar oxides, or it may be an artifact of instrumental analysis. A second study examining Pb sorption to planar gamma-Al(2)O(3) under a series of increasingly complex conditions shows that our methods are able to successfully characterize sorption complexes formed in the presence of environmentally derived complexants. Results suggest that Pb is more strongly complexed by aqueous phase organic matter than sediment-bound organic material, indicating a possible control on Pb sorption in natural environments. Overall, the use of planar oxides combined with a powerful suite of spectroscopic tools provides a promising approach to better understanding metal ion sorption to natural sediment surfaces in aquatic environments.  相似文献   

5.
Insufficient understanding of the interactions of reactive phases (e.g., Fe and Al oxides) with minerals, other reactive phases and sorbing species has made predicting and modeling metal sorption on natural sediment surfaces difficult. This work develops a method to create mixed Fe/Al planar oxide surfaces by coating well-characterized planar gamma-Al2O3 with ferric iron. The objective is to closely control the Fe/Al ratio as well as the distribution of Fe on the planar surface. Effects of starting Fe(III) concentration, reaction time and number of coating sequences were examined using XPS and ToF-SIMS. No observable trend was seen in Fe/Al ratios by varying the starting Fe(III) concentration or reaction time. For both 4- and 14-day reactions, lower concentrations of Fe(III) produced oxide phases with a homogeneous distribution of Fe at the surface as detected by ToF-SIMS. ToF-SIMS Fe elemental maps of the oxide phases resulting from the highest Fe(III) concentration showed areas of localized Fe deposition. A sequential coating procedure allowed for a closer control of the concentration and spatial distribution of Fe(III) in the resulting oxide phase. This work provides methodology that can be used to create Fe/Al oxide phases whose Fe/Al content can be controlled for use in subsequent sorption studies to better understand the effects of mixed phase oxides on metal ion uptake.  相似文献   

6.
In this paper, surface physiochemical properties of three typical aluminas, gamma-Al(OH)3, gamma-Al2O3, and alpha-Al2O3, were investigated by means of XRD, SEM, TEM, BET surface area, TG/DTA, and potentiometric titration techniques. Based on the titration data, surface protonation and deprotonation constants were determined using the constant capacitance model (CCM). The emphasis of this research was laid on the comparison of the crystal structure, surface hydration/dehydration and acid-base properties of these three typical alumina minerals. The calculation results revealed that the surface acidity of the aluminas is in the order of alpha-Al2O3>gamma-Al(OH)3>gamma-Al2O3 after being hydrated for 1 h. The correlation between the hydration/dehydration mechanisms of alumina and its acid/base properties is discussed.  相似文献   

7.
TiO2- and gamma-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When gamma-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/gamma-Al2O3.  相似文献   

8.
In situ characterization of colloidal particles under hydrous conditions is one of the key requirements for understanding their state of aggregation and impact on the transport of pollutants in aqueous environments. Scanning transmission X-ray microscopy (STXM) is one of the few techniques that can satisfy this need by providing element- and chemical-state-specific 2-D maps at a spatial resolution better than 50 nm using soft X-rays from synchrotron radiation wiggler or undulator sources tuned to the absorption edges of different elements. X-ray absorption near-edge structure (XANES) spectra can also be collected simultaneously at a similar spatial resolution and can provide phase identification in many cases. In this study, we report STXM images and XANES spectroscopy measurements at or above the Al K-edge (E = 1559.6 eV) of various Al-containing minerals and synthetic oxides [alpha-Al2O3 (corundum), gamma-Al2O3, gamma-AlOOH (boehmite), alpha-Al(OH)3 (bayerite), KAl2(AlSi3O10)(OH)2 (muscovite), (Al,Mg)8(Si4O10)4(OH)8.nH2O (montmorillonite), and Mg6Al2(OH)16CO3.4H2O (hydrotalcite)] and demonstrate the capability of this spectromicroscopic tool to identify different Al-containing mineral colloids in multiphase mixtures in aqueous solution. We also demonstrate that STXM imaging at or above the C K-edge (E = 284.2 eV) and Al K-edge can provide unique information on the interactions between bacteria and Al-containing nanoparticles in aqueous suspensions. STXM images of a mixture of Caulobacter crescentus and montmorillonite and corundum particles just above the C and Al K-edges show that the mineral particles and bacteria are closely associated in aggregates, which is likely due to the binding of bacteria to clay and corundum particles by extracellular polysaccharides.  相似文献   

9.
This study reports on the application of surface complexation modeling to interpret observed kinetic trends for Fe(II) redox reactions with model nitroaromatic (4-chloronitrobenzene) and oxime carbamate (oxamyl) contaminants in aqueous TiO(2(s)) suspensions. Pseudo-first-order rate constants for reduction of the two probe contaminants (k(red), s(-1)) vary by several orders of magnitude with changing conditions (100-500 microM Fe(II), 0-15 g L(-1) TiO(2(s)), pH 2-9), but the relationship between reaction rates and Fe(II) speciation differs considerably for the two contaminants. For oxamyl, k(red) measurements are most strongly correlated with the volumetric total adsorbed Fe(II) concentration (moles Fe(II) adsorbed per liter of TiO(2(s)) suspension), whereas k(red) measurements for 4-chloronitrobenzene are proportional to the concentration of the hydrolyzed Fe(II) surface complex (equivalent TiOFe(II)OH(0)). The differing trends demonstrate that Fe(II) redox reactivity at the aqueous/TiO(2(s)) interface is influenced, in part, by specific molecular interactions with the target oxidant. Results are also geochemically relevant in that they demonstrate unambiguously that mononuclear Fe(II)-metal (hydr)oxide surface complexes are sufficiently reactive species to reduce nitroaromatic contaminants, an issue that remained open following earlier studies in Fe(III) (hydr)oxide suspensions because structural Fe(II) species are simultaneously present in such systems because of interfacial Fe(II)-to-Fe(III) electron transfer processes that occur on Fe(II) adsorption.  相似文献   

10.
The heterogeneous chemistry and photochemistry of ozone on oxide components of mineral dust aerosol, including α-Fe(2)O(3), TiO(2), and α-Al(2)O(3), at different relative humidities have been investigated using an environmental aerosol chamber. The rate and extent of ozone decomposition on these oxide surfaces are found to be a function of the nature of the surface as well as the presence of light and relative humidity. Under dark and dry conditions, only α-Fe(2)O(3) exhibits catalytic decomposition toward ozone, whereas the reactivity of TiO(2) and α-Al(2)O(3) is rapidly quenched upon ozone exposure. However, upon irradiation, TiO(2) is active toward O(3) decomposition and α-Al(2)O(3) remains inactive. In the presence of relative humidity, ozone decay on α-Fe(2)O(3) subject to irradiation or under dark conditions is found to decrease. In contrast, ozone decomposition is enhanced for irradiated TiO(2) as relative humidity initially increases but then begins to decrease at higher relative humidity levels. A kinetic model was used to obtain heterogeneous reaction rates for different homogeneous and heterogeneous reaction pathways taking place in the environmental aerosol chamber. The atmospheric implications of these results are discussed.  相似文献   

11.
Common complexing ligands such as chloride and sulfate can significantly impact the sorption of Hg(II) to particle surfaces in aqueous environmental systems. To examine the effects of these ligands on Hg(II) sorption to mineral sorbents, macroscopic Hg(II) uptake measurements were conducted at pH 6 and [Hg](i)=0.5 mM on goethite (alpha-FeOOH), gamma-alumina (gamma-Al(2)O(3)), and bayerite (beta-Al(OH)(3)) in the presence of chloride or sulfate, and the sorption products were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The presence of chloride resulted in reduced uptake of Hg(II) on all three substrates over the Cl(-) concentration ([Cl(-)]) range 10(-5) to 10(-2) M, lowering Hg surface coverages on goethite, gamma-alumina, and bayerite from 0.42 to 0.07 micromol/m(2), 0.06 to 0.006 micromol/m(2), and 0.55 to 0.39 micromol/m(2) ([Cl(-)]=10(-5) to 10(-3) M only), respectively. This reduction in Hg(II) uptake is primarily a result of the formation of stable, nonsorbing aqueous HgCl(2) complexes in solution, limiting the amount of free Hg(II) available to sorb. At higher [Cl(-)] beam reduction of Hg(II) to Hg(I) was observed, resulting in the possible formation of aqueous Hg(2)Cl(2) species and the precipitation of calomel, Hg(2)Cl(2(s)). The presence of sulfate caused enhanced Hg(II) uptake over the sulfate concentration ([SO(4)(2-)]) range 10(-5) to 0.9 M, increasing Hg surface coverages on goethite, gamma-alumina, and bayerite from 0.39 to 0.45 micromol/m(2), 0.11 to 0.38 micromol/m(2), and 0.36 to 3.33 micromol/m(2), respectively. This effect is likely due to the direct sorption or accumulation of sulfate ions at the substrate interface, effectively reducing the positive surface charge that electrostatically inhibits Hg(II) sorption. Spectroscopic evidence for ternary surface complexation was observed in isolated cases, specifically in the Hg-goethite-sulfate system at high [SO(4)(2-)] and in the Hg-goethite-chloride system.  相似文献   

12.
The equilibrium parameters for the adsorption of Mo(VI) on gamma-Al(2)O(3) and of Co(II) and Pt(IV) on MoO(3)/gamma-Al(2)O(3) were determined. The adsorption isotherms were performed from aqueous solutions of the corresponding precursors on two different alumina supports. According to the classification given by Giles, L-type-shaped, subgroup 2, adsorption curves were found for the system Mo on gamma-Al(2)O(3), L-type, subgroup 1, for the Pt on MoO(3)/gamma-Al(2)O(3), and S-type for Co on the MoO(3)/gamma-Al(2)O(3) system. Numerical calculations were carried out for all the isotherms to find the equilibrium parameters. These constants are being used to model the development of Pt, Co, and Mo profiles on MoO(3)/gamma-Al(2)O(3) or gamma-Al(2)O(3) extrudates, respectively, which belong to the new generation of noble-metal-MoO(3)/gamma-Al(2)O(3)-supported catalysts to be used in oil-refining processes. Copyright 2001 Academic Press.  相似文献   

13.
The influence of aging in mild aqueous conditions (pH 4, 7 and 9) on surface properties of plasma sprayed oxide was studied using electrophoretic mobility studies and measuring concentrations of dissolved species from exposure liquids. In addition, required acid/base additions to maintain constant pH, redox potentials suspension conductivities were measured. The experiment time was two weeks. The plasma sprayed materials were based on Al(2)O(3), TiO(2) and Cr(2)O(3). Materials based on Al(2)O(3) dissolved easily at pH 4 due to presence of metastable gamma-Al(2)O(3) phase. In addition there was clear change in surface charging properties (zeta potential) of Al(2)O(3) surfaces so that the estimated IEP value drifted from >9 at the beginning of aging and dropped down to 8.5-8.7 after 2 weeks of treatment. Plasma sprayed TiO(2) did not dissolve under the experiment conditions. Even thought the surface charging (zeta potential) changed during the exposure, the estimated IEP remained close to the values reported for pure TiO(2) materials. Plasma sprayed Cr(2)O(3) based materials were also insoluble at the studied pH values. On the other hand, the estimated IEP values deviated radically from the reported PZC values of similar materials.  相似文献   

14.
The transport of aromatic carboxylate compounds in the environment can be strongly influenced by adsorption onto certain minerals, such as iron oxides and hydroxides, found in ground water and soils. Batch experiments with five iron oxides were conducted to quantify the contributions to adsorption from different iron mineral surfaces and compare adsorption characteristics of selected organic acids (gentisic acid (GA) and 1-hydroxy-2-naphthoic acid (HNA)). Because of their widespread abundance in soils and sediments, goethite, lepidocrocite, ferrihydrite, hematite, and magnetite were investigated. Sorption of two organic acids onto iron oxides was examined over a wide range of conditions (pH, ionic strength, and sorbate concentration). Specific surface area and mineral surface charge proved be important for the adsorption of these compounds. The sorption isotherm was described well by the Tempkin equation for both organic acids, with the adsorption constant higher for HNA than GA. For modeling the sorption edges of ferrihydrite and hematite, surface reactions involving the formation of mononuclear (1:1) surface species were proposed. These results indicate that the generalized two-layer model, with the assumption of homogeneous surface sites, could predict sorption on iron oxides over a range of pH conditions. The results of this study suggest that the mineralogy of the iron oxides and the pH value should be considered when predicting sorption of aromatic acids onto iron oxides and their fate in the soil and the environment.  相似文献   

15.
The heterogeneous interaction of H(2)O(2) with TiO(2) surface was investigated under dark conditions and in the presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H(2)O(2) ([H(2)O(2)](0) = (0.17-120) × 10(12) molecules cm(-3)), irradiance intensity (J(NO(2)) = 0.002-0.012 s(-1)), relative humidity (RH = 0.003-82%), and temperature (T = 275-320 K). Under dark conditions, a deactivation of TiO(2) surface upon exposure to H(2)O(2) was observed, and only initial uptake coefficient of H(2)O(2) was measured, given by the following expression: γ(0)(dark) = 4.1 × 10(-3)/(1 + RH(0.65)) (calculated using BET surface area, estimated conservative uncertainty of 30%) at T = 300 K. The steady-state uptake coefficient measured on UV irradiated TiO(2) surface, γ(ss)(UV), was found to be independent of RH and showed a strong inverse dependence on [H(2)O(2)] and linear dependence on photon flux. In addition, slight negative temperature dependence, γ(ss)(UV) = 7.2 × 10(-4) exp[(460 ± 80)/T], was observed in the temperature range (275-320) K (with [H(2)O(2)] ≈ 5 × 10(11) molecules cm(-3) and J(NO(2)) = 0.012 s(-1)). Experiments with NO addition into the reactive system provided indirect evidence for HO(2) radical formation upon H(2)O(2) uptake, and the possible reaction mechanism is proposed. Finally, the atmospheric lifetime of H(2)O(2) with respect to the heterogeneous loss on mineral dust was estimated (using the uptake data for TiO(2)) to be in the range of hours during daytime, i.e., comparable to H(2)O(2) photolysis lifetime (~1 day), which is the major removal process of hydrogen peroxide in the atmosphere. These data indicate a strong potential impact of H(2)O(2) uptake on mineral aerosol on the HO(x) chemistry in the troposphere.  相似文献   

16.
Phyllosilicates with net negative surface charge and Fe/Al oxides with net positive surface charge coexist in variable-charge soils, and the interaction between these oppositely charged particles affects the stability of mixed colloids, aggregation, and even the surface chemical properties of variable-charge soils. The interaction of the diffuse layers of electrical double layers between the negatively charged soil colloidal particles and the positively charged particles of goethite or gamma-Al(2)O(3) was investigated in this article through the comparison of zeta potentials between single-soil colloidal systems and binary systems containing soil colloids and Fe/Al oxides. The results showed that the presence of goethite and gamma-Al(2)O(3) increased the zeta potential of the binary system containing soil colloids and Fe/Al oxides, which clearly suggests the overlapping of the diffuse layers in soil colloids and Fe/Al oxides. The overlapping of the diffuse layers leads to a decrease in the effective negative charge density on soil colloid and thus causes a shift of pH-zeta potential curves toward the more positive-value side. The interaction of the electrical double layers is also related to the charge characteristics on the Fe/Al oxides: the higher the positive charge density on Fe/Al oxides, the stronger the interaction of the electrical double layers between the soil colloid particles and the Fe/Al oxides.  相似文献   

17.
Using recent well-defined models of gamma-Al2O3 surfaces, we study the interaction of single Pd atoms with gamma-Al2O3 surfaces corresponding to realistic pretreatment conditions by means of density functional theory periodic calculations. For relevant hydroxylation states of the surface, we determine potential energy surfaces (PES) that depict the relationship between structure and interaction at the metal-oxide interface. This approach enables the determination of the low-energy diffusion paths of the adsorbed Pd species. We applied classical transition-state theory to derive the temperature-dependent hopping rate of Pd on gamma-Al2O3 surfaces. Our work provides new insight into the chemisorption and diffusion process of single Pd atoms on alumina and show that the binding energy and hopping rate of Pd atoms decrease as the surface OH coverage increases. These results offer new highlights on Pd cluster formation at the initial nucleation steps on gamma-Al2O3 surfaces.  相似文献   

18.
First-principle density functional theory (DFT) calculations on the electronic state and structure of a [Co2+]2/gamma-Al2O3 model catalyst have been performed in relation to catalysis for unique NO-CO reactions on a Co2+ ensemble/gamma-Al2O3 catalyst. The DFT calculations reveal that a bulk structure of gamma-Al2O3 is energetically most favorable when aluminum vacancies are evenly dispersed at octahedral sites, and that the (110) plane is exposed as a top-most layer by its neutrality. Two Co2+ ions on the (110) surface are supported adjacently to each other in a tetrahedral symmetry. The calculations also demonstrate that the vacant d orbitals of the two Co2+ ions are directed toward each other, which brings about an adsorbate-adsorbate interaction between two molecules which adsorb on each of the Co2+ ions. This may be an origin of the unique aspect of Co2+ ensemble/gamma-Al2O3 catalysis.  相似文献   

19.
We have undertaken a kinetic study of heterogeneous ozone decomposition on alpha-Fe2O3 (hematite) and alpha-Al2O3 (corundum) aerosols under ambient conditions of temperature, pressure, and relative humidity in order to better understand the role of mineral dust aerosol in ozone loss mechanisms in the atmosphere. The kinetic measurements are made in an environmental aerosol reaction chamber by use of infrared and ultraviolet spectroscopic probes. The apparent heterogeneous uptake coefficient, gamma, for ozone reaction with alpha-Fe2O3 and alpha-Al2O3 surfaces is determined as a function of relative humidity (RH). The uptake of ozone by the iron oxide surface is approximately an order of magnitude larger than that by the aluminum oxide sample, under dry conditions. At the pressures used, alpha-Fe2O3 shows clear evidence for catalytic decomposition of ozone while alpha-Al2O3 appears to saturate at a finite ozone coverage. The measured uptake for both minerals decreases markedly as the RH is increased. Comparison with other literature reports and the atmospheric implications of these results are discussed.  相似文献   

20.
Russian Chemical Bulletin - A heterogeneous system Fe(CrO2)2–TiO2/X (where X is promoter NiO, CuO, ZnO, Cr2O3, Fe2O3, PrOCl, TbOCl, LaOCl, or EuOCl) was prepared. The photocatalytic activity...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号