首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The profile of the interaction potential between polystyrene latex particle and chemically modified glass surface was estimated directly by the evanescent wave light scattering microscope (EVLSM) method; this enables us to measure the distance between particle and surface as a function of time in the order of less than a millisecond. The minimum of the potential profile, which is the result of an electrostatic repulsion and an apparent attraction by gravity between the particle and surface, was clearly observed. To change the electrostatic nature, the glass surface was chemically modified by treatment with a silanization reagent and a vinyl monomer with a sulfonate group. As the absolute value of the zeta potential of the glass surface became larger, the position of the potential minimum on the interaction potential profile shifted away from the glass surface, reflecting an increase of electrostatic repulsion between the particle and the wall. The ionic strength dependence of the potential profile was also clearly observed. In conclusion, EVLSM is a powerful tool for the quantitative estimation of particle-wall interactions. Received: 3rd March 1998 Accepted in revised form: 26 August 1998  相似文献   

2.
If colloidal particles are grafted with a polymer, then the grafted chains can provide steric repulsion between them. If some of the grafted polymer chains are also adsorbed to a second particle, then a bridging force is generated as well. For uncharged plates and polymer, the following contributions to the free energy of the system have been taken into account in the calculation of the interaction force: (i) the Flory-Huggins expression for the mixing free energy of the grafted chains with the liquid; (ii) the entropy loss due to the connectivity of the polymeric segments; (iii) the van der Waals interactions between the segments and the plates; and (iv) the free energy of adsorption of the polymer segments of the grafted chains on the other plate. For charged plates, the electrostatic free energy as well as the free energy of the electrolyte are included in the total free energy of the system. By minimizing the free energy with respect to the segment concentration and, when it is the case, with respect to the electrical potential, equations for the segment number density distribution and for the electrical potential are obtained, on the basis of which the interactions between two plates grafted with polymer chains that can be also adsorbed on the other plate were calculated. The interaction thus obtained includes steric and bridging forces.  相似文献   

3.
Small-angle neutron scattering was used to investigate the interactions in concentrated colloidal dispersions containing silica or polystyrene latex with adsorbed polyethyleneoxide (PEO). In these dispersions of charged particles, both electrostatic and steric repulsions are present. The PEO layer was made invisible to neutrons through contrast matching. The effect of the interparticle repulsion was clearly shown in the scattering spectra by the appearance of a peak at low Q. The effective potentials can be well described by the Hayter-Penfold/Yukawa (HPY) potential. In the silica dispersions studied, the layer thickness is small, hence the electrostatic potential dominates and the potential has a lower concentration dependence. In the dispersions of polystyrene latex, the adsorbed layer is thicker; consequently, the electrostatic potential dominates at low volume fraction (the potential has a lower concentration dependence), and the steric potential dominates at higher volume fraction (the potential has a higher concentration dependence). This study also suggests that when more than one potential is present the stronger one has a dominant influence in determining the structure factor. This finding makes it possible to describe the multicomponential interactions by a single function.  相似文献   

4.
Acrylic acid (AA) is used in many emulsion polymerization formulations to improve the colloidal stability during and after the production of latex products. Theoretically, the improved stability originates from electrostatic repulsion complemented with steric repulsion. The objective of this work was to study the contribution of AA to the colloidal stability of polystyrene and styrene/AA copolymer latices under simulated reaction conditions. The strength of electrostatic and steric repulsion forces as a function of the electrolyte concentration, pH, and temperature was investigated via coagulation experiments with monomer‐swollen latices in stirred tank reactors. Transmission electron microscopy pictures and dynamic light scattering measurements provided an understanding of the conditions and mechanisms leading to coagulation. The experiments demonstrated that the presence of surface‐bound carboxylic groups only improved the colloidal stability if the carboxylic groups were charged, that is, at a high pH. At a low pH, the copolymer latices were even less stable than the homopolymer latex, and this indicated that the addition of AA did not improve the colloidal stability of a growing polystyrene latex. With respect to emulsion polymerization process operations, insufficient mixing and a highly concentrated electrolyte feed were found to be sources of fouling and enhanced macroscopic coagulation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 726–732, 2005  相似文献   

5.
In this work, the impact of lipid lateral mobility on the steric interaction between membranes containing poly(ethylene glycol) (PEG) functionalized lipids was investigated using the surface force apparatus. The force-distance profiles show the presence of electrostatic and steric repulsion that arise from the presence of negatively charged PEG functionalized lipids. Fluid-phase bilayers have high lateral diffusion relative to gel-phase bilayers; however, a quantitative comparison of the interaction forces between membranes in these two different phase states demonstrates a reduced rate of diffusion in the fluid phase for the PEG-lipids under constrained geometries. Thus, the amount of polymer in the contact zone can be modulated and is reduced with fluid membranes; however, complete exclusion was not achieved. As a result, the steric repulsion afforded by PEG chains or binding affinity of ligated PEG chains can only be modestly tailored by the phase state of the liposome.  相似文献   

6.
The adhesive forces between solid particles mutually attached during coagulation or bridging flocculation are important for modelling floc stability. Results are presented in this study which are obtained from experiments on the adhesion of glass or quartz particles to a flat glass substrate (centrifugal method) or to the wall of a glass capillary through which an aqueous electrolyte solution was passed. Coagulation experiments carried out in 10–2 mole/1 MgCl2 showed the action of hydration layers on hydrophilic surfaces, whereas surface methylation is associated with adhesion in the inner potential minimum. In addition essential ageing effects interpreted as interparticle gelation were observed, especially on the interaction of alkali glass surfaces. Adhesive strength in the case of flocculation with hydrolysed polyacrylamide and a cationic Praestol mainly depends on the polymer concentration and on the preadsorption conditions before the particle-substrate attachment. A significant strengthening of adhesion due to reconformation of the bridging agents was not observed for a contact time greater than 3 min. The effect of steric stabilization with polymer overdosing could be proved by a special preparation technique.Publication no. 922 from the Research Institute of Mineral Processing of the Academy of Sciences of German Democratic Republic, Freiberg.  相似文献   

7.
Molecular simulations (Dissipative Particle Dynamics - DPD) were used to quantify the effect of polymer adsorption on the effective shear viscosity of a semi-dilute polymer solution in microchannel Poseuille flow. It is well known that polymer depletion layers develop adjacent to solid walls due to hydrodynamic forces, causing an apparent wall slip and reduced effective viscosity (increased total flow rate). We found that depletion layers also developed in the presence of hydrodynamically rough adsorbed layers on the wall. Polymer-polymer (steric) repulsion between flowing and adsorbed polymer expanded the depletion layer compared to no-adsorption cases, and the effective viscosity was reduced further. Desorption occurred for higher shear rates, reducing the repulsion effect and shrinking the depletion layers. A phenomenological algebraic model for the depletion layer thickness, including a shear modified adsorption isotherm, was developed based on the simulation data. The depletion layer model can be used together with the effective viscosity model we developed earlier.  相似文献   

8.
The interaction between cellulose fibers in the presence of cationic polyacrylamide (CPAM) was analyzed by rheology as a function of polyelectrolyte concentration, charge density, and molecular weight. CPAM was found to strongly influence the yield stress of cellulose suspensions; low doses of CPAM increased the yield stress, but at higher concentrations the yield stress declined. The charge density of the CPAM was the most significant factor in how yield stress responded to CPAM concentration; this effect was able to be normalized to a master curve by considering only the charged fraction of the polymer. The molecular weight of CPAM samples had some effect at high concentrations, but for lower CPAM doses the yield stress was independent of molecular weight over the range studied. The data suggest that CPAM modifies the interaction between cellulose surfaces via several mechanisms, with electrostatic interactions in the form of charge neutralization and charged patch formation dominating; polymer bridging and steric repulsion also influence the overall balance of forces between interacting cellulose fibers.  相似文献   

9.
The deposition of eight bacterial strains on Teflon and glass in aqueous media with ionic strengths varying between 0.0001 and 1 M was measured and interpreted. Two types of interactions were considered: (1) those described by the DLVO theory, which comprise van der Waals attraction and electrostatic repulsion (bacteria and surfaces are both negatively charged); and (2) steric interactions between the outer cell surface macromolecules and the substrata. As a trend, at low ionic strength (<0.001 M), deposition is inhibited by DLVO-type electrostatic repulsion, but at high ionic strength (≥0.1 M) it is dominated by steric interactions. The ionic strength at which the transition from the DLVO-controlled to the sterically controlled deposition occurs, is determined by the extension of the macromolecules into the surrounding medium, which varied between 5 and 100 nm among the bacterial strains studied. The steric interactions either promote deposition by bridging or inhibit it by steric repulsion. Between Teflon and hydrophobic bacteria, bridging is generally observed. The surface of one bacterial strain contains amphiphilic macromolecules that form bridges with Teflon but induce steric repulsion on glass. The presence of highly polar anionic polysaccharide coatings on the cell impedes attachment on both glass and Teflon. For practice, the general conclusion is that the deposition of most bacteria is: (1) strongly inhibited by DLVO-type electrostatic repulsion in aqueous environments of low ionic strength such as rain water, streams and lakes; (2) controlled by DLVO and/or steric interactions in systems as domestic waste waters and saliva; and (3) determined by steric interactions only in more saline environments as milk, urine, blood and sea water.  相似文献   

10.
A polystyrene macro-iniferter was applied to control the alignment of liquid crystal molecules at the droplet wall of polymer dispersed liquid crystal (PDLC) films. The aspects of the alignment were monitored by observing the droplet in the PDLC film. With increasing the macro-iniferter polystyrene in the composition, the configuration of LC droplets changes from bipolar to radial. This is because the high concentration of the macro-iniferter polystyrene results in a small surface interaction between the LC and the polymer matrix, which favours the formation of radial configuration. The radial configuration was stable under our conditions. However, increasing the LC and the initiator concentrations resulted in the change from radial to bipolar.  相似文献   

11.
Experiments carried out by Stenkamp et al. [Stenkamp, V. S.; McGuiggan, P.; Berg, J. C. Langmuir 2001, 17, 637.] have shown that polystyrene latexes can be restabilized at sufficiently high electrolyte concentrations in the presence of an amphiphilic block copolymer [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)] At even higher electrolyte concentrations, the systems can again be destabilized. The present paper attempts to explain the restabilization through the dominance of steric interactions and the destabilization through the dominance of depletion interactions. Because of salting out, as the concentration of electrolyte increases, the polymer molecules are increasingly precipitated onto the surface of the latex particles and, at sufficiently high electrolyte concentrations, form, in addition, aggregates. The precipitation onto the latex particles generates steric repulsion, which is responsible for the restabilization, whereas the formation of aggregates generates depletion interactions, which are responsible for destabilization.  相似文献   

12.
The interparticle interactions in concentrated suspensions are described. Four main types of interactions can be distinguished: (i) "Hard-sphere" interactions whereby repulsive and attractive forces are screened. (ii) "Soft" or electrostatic interactions determined by double layer repulsion. (iii) Steric repulsion produced by interaction between adsorbed or grafted surfactant and polymer layers. (iv)and van der Waals attraction mainly due to London dispersion forces. Combination of these interaction energies results in three main energy-distance curves: (i) A DLVO type energy-distance curves produced by combination of double layer repulsion and van der Waals attraction. For a stable suspension the energy-distance curve shows a "barrier" (energy maximum) whose height must exceed 25kT (where k is the Boltzmann constant and T is the absolute temperature). (ii) An energy-distance curve characterized by a shallow attractive minimum at twice the adsorbed layer thickness 2δ and when the interparticle-distance h becomes smaller than 2δ the energy shows a sharp increase with further decrease of h and this is the origin of steric stabilization. (iii) an energy-distance curve characterized by a shallow attractive minimum, an energy maximum of the DLVO type and a sharp increase in energy with further decrease of h due to steric repulsion. This is referred to as electrosteric repulsion. The flocculation of electrostatically and sterically stabilized suspensions is briefly described. A section is devoted to charge neutralization by polyelectrolytes and bridging flocculation by polymers. A distinction could be made between "dilute", "concentrated" and "solid suspensions" in terms of the balance between the Brownian motion and interparticle interaction. The states of suspension on standing are described in terms of interaction forces and the effect of gravity. The bulk properties (rheology) of concentrated suspensions are described starting with the case of very dilute suspensions (the Einstein limit with volume fraction Φ≤0.01), moderately concentrated suspensions (0.2>Φ≥0.1) taking into account the hydrodynamic interaction and concentrated suspensions (Φ>0.2) where semi-empirical theories are available. The rheological behavior of the above four main types of interactions is described starting with "hard-sphere" systems where the relative viscosity-volume fraction relationship could be described. The rheology of electrostatically stabilized suspensions was described with particular reference to the effect of electrolyte that controls the double layer extension. The rheology of sterically stabilized systems is described using model polystyrene suspensions with grafter poly(ethylene oxide) layers. Finally the rheology of flocculated suspensions was described and a distinction could be made between weakly and strongly flocculated systems.  相似文献   

13.
Interaction forces between two gold surfaces with adsorbed poly(amidoamine) (PAMAM) dendrimers (generations G3.0 and G5.0) have been investigated using colloidal probe atomic force microscopy (AFM). In the absence of dendrimers or at their low concentrations, an attractive force derived from the van der Waals interaction was observed. On the other hand, this attractive interaction changed to repulsion with increasing dendrimer concentration. The origin of the repulsion can be attributed to either an electric double layer interaction or a steric effect of the adsorbed dendrimers, depending on the concentration of dendrimer. The steric hindrance was also influenced by the generation of the dendrimer; the force-detectable distance in the presence of PAMAM G5.0 dendrimer was slightly longer than that in the presence of G3.0 dendrimer. In order to estimate the occupied area of each dendrimer adsorbed on gold, quartz crystal microbalance (QCM) measurement was also carried out.  相似文献   

14.
A theoretical model for analyzing the steric repulsion energy between internal aqueous droplets and the external aqueous phase in double emulsions, which results from the steric interaction between the surfactant molecules adsorbed at the two interfaces, has been established. The steric interaction is dependent on the separation distance between the internal aqueous droplets and the external aqueous phase, the thicknesses of the two adsorbed surfactant layers, and the size of the internal aqueous droplets and the oil globules, all of which determine the extent of the compression of the adsorbed surfactant molecules. The thickness of each of the two surfactant layers have the same effect on the steric repulsion, and stronger steric interaction can be achieved with thicker adsorbed layers, which can effectively prevent coalescence between the internal aqueous droplets and the external aqueous phase. Increasing the internal aqueous droplet size can produce stronger steric repulsion; however, larger oil globules will weaken the steric repulsion, indicating that a more stable double-emulsion system can be achieved by preparing the system with smaller oil globules and larger internal aqueous droplets.  相似文献   

15.
Foam films from aqueous solutions of an ABA triblock copolymer of polyethylene oxide and polypropylene oxide (M = 14,000) are studied. A narrow polymer concentration range located below the CMC is investigated at both low and high electrolyte (NaCI) concentrations. The dependence of the surface force on film thickness is monitored by two complementary techniques: the porous plate method and the dynamic method of Scheludko and Exerowa. When the film thickness decreases, the total surface force is initially negative and after a minimum gradually increases to positive values. A transition from electrostatic to polymeric stabilization is induced by increasing the NaCI concentration. Our data can be fitted reasonably well with a combination of the DLVO theory ( van der Waals attraction and double layer repulsion) and de Gennes' scaling theory of steric interaction between grafted polymer layers.  相似文献   

16.
The majority of compatible polymer mixtures known so far has been rationalized by assuming special interactions between the different polymers or by specific repellent forces within certain types of copolymers. Thus, the compatibility of PMMA with special copolymers of styrene and acrylonitrile is explained by an intramolecular repulsion within the copolymer between the two comonomers styrene and acrylonitrile. In our opinion this phenomenon is not limited to copolymers, but also holds for explaining the compatibility of various homopolymers such as PVDF/PMMA. To this end we simply regard the homopolymer PVDF (-CH2-CF2-) as a copolymer of -CH2- and -CF2- “monomers”. By the same token it is possible to assume repellent forces within the PMMA monomer units (i.e. repulsion between the CH2-C(CH3) and the polar carbonyl group). Those strong repellent forces within the PVDF and PMMA homopolymers can be reduced by mixing the two species. This concept of repulsive forces within monomers as a driving force for polymer-polymer compatibility can be used to search for new classes of compatible polymers. This will be demonstrated with the polystyrene/polyalkylmethacrylate blends. Thus, with comparable geometry in the side chains, polystyrene and polymethacrylic esters will form compatible blends, as born out in the systems polystyrene/polycyclohexyl methacrylate or poly-tert-butyl styrene/poly-3,3,5-trimethylcyclohexylmethacrylate which are compatible in all proportions. Taking into account certain steric prerequisites, one can even obtain compatible blends lacking exothermic interaction.  相似文献   

17.
18.
The effect of solute concentration on the equilibrium partitioning of sphere-like, colloidal solutes in stiff polymer hydrogels is examined theoretically and experimentally. The theoretical development is a statistical mechanics approach, and allows quantitative calculations to be performed to determine the concentration-dependent partition coefficient correct to first order in solute concentration at specific surface charge densities. The theory predicts that repulsive steric and/or electrostatic solute-fiber interactions exclude solute from the gel phase, but that repulsive solute-solute interactions cause partitioning into the gel to increase with increasing solute concentration. These trends are enhanced for larger solutes, increased fiber volume fractions, or stronger electrostatic repulsion. Partition coefficients have also been measured for two proteins, bovine serum albumin (BSA) and alpha-lactalbumin (ALA), in a system consisting of a salt solution and cubes of agarose hydrogel. To investigate the effect of electrostatic interactions, the experiments were performed at 0.15 M KCl and 0.01 M KCl. The theory underpredicts the strong electrostatic repulsion between BSA macromolecules at the lower ionic strength. The experimental results for ALA show the influence of an attractive interaction between the protein macromolecules, in addition to hard-sphere repulsive and electrostatic interactions. Copyright 2001 Academic Press.  相似文献   

19.
The interaction between a colloidal polystyrene particle mounted on an AFM cantilever and a hydrophilic and a hydrophobic surface in aqueous solution is investigated. Despite the apparent simplicity of these two types of systems a variety of different types of interactions are observed. The system containing the polystyrene particle and a hydrophilic surface shows DLVO-like interactions characteristic of forces between charged surfaces. However, when the surface is hydrophobized the interaction changes dramatically and shows evidence of a bridging air bubble being formed between the particle and the surface. For both sets of systems, plateaus of constant force in the force curves are obtained when the particle is retracted from the surface after being in contact. These events are interpreted as a number of individual polystyrene molecules that are bridging the polystyrene particle and the surface. The plateaus of constant force are expected for pulling a hydrophobic polymer in a bad (hydrophilic) solvent. The plateau heights are found to be of uniform spacing and independent of the type of surface, which suggests a model by which collapsed polymers are extended into the aqueous medium. This model is supported by a full stretching curve showing also the backbone elasticity and a stretching curve obtained in pentanol, where the plateau changes to a nonlinear force response, which is typical for a polymer in a good or neutral solvent. We suggest that these polymer bridges are important in particular for the interaction between polystyrene and the hydrophilic surface, where they to some extent counteract the long-range electrostatic repulsion.  相似文献   

20.
Sedimentation equilibrium in the ultracentrifuge means that there is such a distribution of molecular species throughout the cell, that the centrifugal forces are balanced by differences in the activities. This provides a method for determination of the activities and the chemical potentials in polymer solutions which, in principle, is very simple and reliable. A complication is caused by polydispersity of the dissolved polymer. If one assumes that the interaction parameter depends on concentration and temperature, but not on molecular weight, it is possible to determine the chemical potential of polymer and solvent from the ultracentrifugal data. Experiments have been carried out on the systems polystyrene–toluene and polystyrene–cyclohexane at different temperatures and in the concentration range 0–80 wt-%. The results are expressed in the data for the chemical potential of the solvent, the number average chemical potential of the polymer and the interaction parameter χ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号