首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study singularities of Lagrangian mean curvature flow in ℂ n when the initial condition is a zero-Maslov class Lagrangian. We start by showing that, in this setting, singularities are unavoidable. More precisely, we construct Lagrangians with arbitrarily small Lagrangian angle and Lagrangians which are Hamiltonian isotopic to a plane that, nevertheless, develop finite time singularities under mean curvature flow. We then prove two theorems regarding the tangent flow at a singularity when the initial condition is a zero-Maslov class Lagrangian. The first one (Theorem A) states that that the rescaled flow at a singularity converges weakly to a finite union of area-minimizing Lagrangian cones. The second theorem (Theorem B) states that, under the additional assumptions that the initial condition is an almost-calibrated and rational Lagrangian, connected components of the rescaled flow converges to a single area-minimizing Lagrangian cone, as opposed to a possible non-area-minimizing union of area-minimizing Lagrangian cones. The latter condition is dense for Lagrangians with finitely generated H 1(L,ℤ).  相似文献   

2.
周连第 《计算数学》1979,1(3):264-271
本文讨论用拉格朗日乘子法求解线性等式约束最小二乘问题(简称 LSE 问题)的优点.应用此法能细致地讨论约束条件与变量之间的关系,据此并可证明 LSE 问题与某一个无约束最小二乘问题的等价性.此外,尚可得到参数和拉格朗日乘子的协方差矩阵.最后给出一个数值稳定的解 LSE 问题的算法.  相似文献   

3.
Lagrangian Duality and Cone Convexlike Functions   总被引:1,自引:0,他引:1  
In this paper, we consider first the most important classes of cone convexlike vector-valued functions and give a dual characterization for some of these classes. It turns out that these characterizations are strongly related to the closely convexlike and Ky Fan convex bifunctions occurring within minimax problems. Applying the Lagrangian perturbation approach, we show that some of these classes of cone convexlike vector-valued functions show up naturally in verifying strong Lagrangian duality for finite-dimensional optimization problems. This is achieved by extending classical convexity results for biconjugate functions to the class of so-called almost convex functions. In particular, for a general class of finite-dimensional optimization problems, strong Lagrangian duality holds if some vector-valued function related to this optimization problem is closely K-convexlike and satisfies some additional regularity assumptions. For K a full-dimensional convex cone, it turns out that the conditions for strong Lagrangian duality simplify. Finally, we compare the results obtained by the Lagrangian perturbation approach worked out in this paper with the results achieved by the so-called image space approach initiated by Giannessi.  相似文献   

4.
Given a graph G, the Shortest Capacitated Paths Problem (SCPP) consists of determining a set of paths of least total length, linking given pairs of vertices in G, and satisfying capacity constraints on the arcs of G.We formulate the SCPP as a 0-1 linear program and study two Lagrangian relaxations for getting lower bounds on the optimal value. We then propose two heuristic methods. The first one is based on a greedy approach, while the second one is an adaptation of the tabu search meta-heuristic.  相似文献   

5.
This is a summary of the author’s PhD thesis supervised by Alberto Caprara and Paolo Toth and defended on 29 May 2007 at the Università di Bologna. The thesis is written in English and is available from the author upon request. This work deals with Railway Optimization, and in particular it focuses on the Train Timetabling Problem (in the basic version on a corridor and in the extension to a railway network), and on the Train Unit Assignment Problem. Integer Linear Programming (ILP) formulations are proposed for both problems, and their continuous and Lagrangian relaxations are used to obtain optimal and heuristic solutions to real-world instances.   相似文献   

6.
This paper deals with the Bi-Objective Set Covering Problem, which is a generalization of the well-known Set Covering Problem. The proposed approach is a two-phase heuristic method which has the particularity to be a constructive method using the primal-dual Lagrangian relaxation to solve single objective Set Covering problems. The results show that this algorithm finds several potentially supported and unsupported solutions. A comparison with an exact method (up to a medium size), shows that many Pareto-optimal solutions are retrieved and that the other solutions are well spread and close to the optimal ones. Moreover, the method developed compares favorably with the Pareto Memetic Algorithm proposed by Jaszkiewicz.  相似文献   

7.
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the ${\varepsilon_{k}}A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the ek{\varepsilon_{k}} -global minimization of the Augmented Lagrangian with simple constraints, where ek ? e{\varepsilon_k \to \varepsilon} . Global convergence to an e{\varepsilon} -global minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented.  相似文献   

8.
The observation that at leasts constraints are active when the Hessian of the Lagrangian hass negative eigenvalues at a local minimizer is used to obtain two results: (i) a class of nearly concave quadratic minimization problem can be solved in polynomial time; (ii) a class of indefinite quadratic test problems can be constructed with a specified number of positive and negative eigenvalues and with a known global minimizer.The authors thank the reviewers for their constructive comments. The first author was supported by the National Science Foundation Grant DMS-85-20926 and by the Air Force Office of Scientific Research Grant AFOSR-ISSA-86-0091.  相似文献   

9.
10.
This paper concerns Floer homology for periodic orbits and for a Lagrangian intersection problem on the cotangent bundle T* M of a compact orientable manifold M. The first result is a new L estimate for the solutions of the Floer equation, which allows us to deal with a larger—and more natural—class of Hamiltonians. The second and main result is a new construction of the isomorphism between the Floer homology and the singular homology of the free loop space of M in the periodic case, or of the based loop space of M in the Lagrangian intersection problem. The idea for the construction of such an isomorphism is to consider a Hamiltonian that is the Legendre transform of a Lagrangian on T M and to construct an isomorphism between the Floer complex and the Morse complex of the classical Lagrangian action functional on the space of W1,2 free or based loops on M. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
The solution to the Skorokhod Problem defines a deterministic mapping, referred to as the Skorokhod Map, that takes unconstrained paths to paths that are confined to live within a given domain G n . Given a set of allowed constraint directions for each point of ∂G and a path ψ, the solution to the Skorokhod Problem defines the constrained version φ of ψ, where the constraining force acts along one of the given boundary directions using the “least effort” required to keep φ in G. The Skorokhod Map is one of the main tools used in the analysis and construction of constrained deterministic and stochastic processes. When the Skorokhod Map is sufficiently regular, and in particular when it is Lipschitz continuous on path space, the study of many problems involving these constrained processes is greatly simplified. We focus on the case where the domain G is a convex polyhedron, with a constant and possibly oblique constraint direction specified on each face of G, and with a corresponding cone of constraint directions at the intersection of faces. The main results to date for problems of this type were obtained by Harrison and Reiman [22] using contraction mapping techniques. In this paper we discuss why such techniques are limited to a class of Skorokhod Problems that is a slight generalization of the class originally considered in [22]. We then consider an alternative approach to proving regularity of the Skorokhod Map developed in [13]. In this approach, Lipschitz continuity of the map is proved by showing the existence of a convex set that satisfies a set of conditions defined in terms of the data of the Skorokhod Problem. We first show how the geometric condition of [13] can be reformulated using convex duality. The reformulated condition is much easier to verify and, moreover, allows one to develop a general qualitative theory of the Skorokhod Map. An additional contribution of the paper is a new set of methods for the construction of solutions to the Skorokhod Problem. These methods are applied in the second part of this paper [17] to particular classes of Skorokhod Problems. Received: 17 April 1998 / Revised version: 8 January 1999  相似文献   

12.
A finitely generated quadratic module or preordering in the real polynomial ring is called stable, if it admits a certain degree bound on the sums of squares in the representation of polynomials. Stability, first defined explicitly in Powers and Scheiderer (Adv Geom 1, 71–88, 2001), is a very useful property. It often implies that the quadratic module is closed; furthermore, it helps settling the Moment Problem, solves the Membership Problem for quadratic modules and allows applications of methods from optimization to represent nonnegative polynomials. We provide sufficient conditions for finitely generated quadratic modules in real polynomial rings of several variables to be stable. These conditions can be checked easily. For a certain class of semi-algebraic sets, we obtain that the nonexistence of bounded polynomials implies stability of every corresponding quadratic module. As stability often implies the non-solvability of the Moment Problem, this complements the result from Schmüdgen (J Reine Angew Math 558, 225–234, 2003), which uses bounded polynomials to check the solvability of the Moment Problem by dimensional induction. We also use stability to generalize a result on the Invariant Moment Problem from Cimpric et al. (Trans Am Math Soc, to appear).  相似文献   

13.
This paper considers the numerical solution of two classes of optimal control problems, called Problem P1 and Problem P2 for easy identification.Problem P1 involves a functionalI subject to differential constraints and general boundary conditions. It consists of finding the statex(t), the controlu(t), and the parameter so that the functionalI is minimized, while the constraints and the boundary conditions are satisfied to a predetermined accuracy. Problem P2 extends Problem P1 to include nondifferential constraints to be satisfied everywhere along the interval of integration. Algorithms are developed for both Problem P1 and Problem P2.The approach taken is a sequence of two-phase cycles, composed of a gradient phase and a restoration phase. The gradient phase involves one iteration and is designed to decrease the value of the functional, while the constraints are satisfied to first order. The restoration phase involves one or more iterations and is designed to force constraint satisfaction to a predetermined accuracy, while the norm squared of the variations of the control, the parameter, and the missing components of the initial state is minimized.The principal property of both algorithms is that they produce a sequence of feasible suboptimal solutions: the functions obtained at the end of each cycle satisfy the constraints to a predetermined accuracy. Therefore, the values of the functionalI corresponding to any two elements of the sequence are comparable.The stepsize of the gradient phase is determined by a one-dimensional search on the augmented functionalJ, while the stepsize of the restoration phase is obtained by a one-dimensional search on the constraint errorP. The gradient stepsize and the restoration stepsize are chosen so that the restoration phase preserves the descent property of the gradient phase. Therefore, the value of the functionalI at the end of any complete gradient-restoration cycle is smaller than the value of the same functional at the beginning of that cycle.The algorithms presented here differ from those of Refs. 1 and 2, in that it is not required that the state vector be given at the initial point. Instead, the initial conditions can be absolutely general. In analogy with Refs. 1 and 2, the present algorithms are capable of handling general final conditions; therefore, they are suited for the solution of optimal control problems with general boundary conditions. Their importance lies in the fact that many optimal control problems involve initial conditions of the type considered here.Six numerical examples are presented in order to illustrate the performance of the algorithms associated with Problem P1 and Problem P2. The numerical results show the feasibility as well as the convergence characteristics of these algorithms.This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-76-3075. Partial support for S. Gonzalez was provided by CONACYT, Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico.  相似文献   

14.
A pair of primal-dual integer programs is constructed for a class of problems motivated by a generalization of the concept of greatest common divisor. The primal-dual formulation is based on a number-theoretic, rather than a Lagrangian, duality property; consequently, it avoids the dualitygap common to Lagrangian duals in integer programming.This research was partially supported by the National Science Foundation, Grant No. DCR-74-20584  相似文献   

15.
We consider an extension of the capacitated Vehicle Routing Problem (VRP), known as the Vehicle Routing Problem with Backhauls (VRPB), in which the set of customers is partitioned into two subsets: Linehaul and Backhaul customers. Each Linehaul customer requires the delivery of a given quantity of product from the depot, whereas a given quantity of product must be picked up from each Backhaul customer and transported to the depot. VRPB is known to be NP-hard in the strong sense, and many heuristic algorithms were proposed for the approximate solution of the problem with symmetric or Euclidean cost matrices. We present a cluster-first-route-second heuristic which uses a new clustering method and may also be used to solve problems with asymmetric cost matrix. The approach exploits the information of the normally infeasible VRPB solutions associated with a lower bound. The bound used is a Lagrangian relaxation previously proposed by the authors. The final set of feasible routes is built through a modified Traveling Salesman Problem (TSP) heuristic, and inter-route and intra-route arc exchanges. Extensive computational tests on symmetric and asymmetric instances from the literature show the effectiveness of the proposed approach.  相似文献   

16.
The word problem for discrete groups is well known to be undecidable by a Turing Machine; more precisely, it is reducible both to and from and thus equivalent to the discrete Halting Problem. The present work introduces and studies a real extension of the word problem for a certain class of groups which are presented as quotient groups of a free group and a normal subgroup. As a main difference to discrete groups these groups may be generated by uncountably many generators with index running over certain sets of real numbers. We study the word problem for such groups within the Blum–Shub–Smale (BSS) model of real number computation. The main result establishes the word problem to be computationally equivalent to the Halting Problem for such machines. It thus gives the first non-trivial example of a problem complete, that is, computationally universal for this model. M. Ziegler supported by (project Zi1009/1-2).  相似文献   

17.
We consider the following problem from the Kirby's list (Problem 3.25): Let K be a knot in and M(K) its 2-fold branched covering space. Describe the equivalence class [K] of K in the set of knots under the equivalence relation if is homeomorphic to . It is known that there exist arbitrarily many different hyperbolic knots with the same 2-fold branched coverings, due to mutation along Conway spheres. Thus the most basic class of knots to investigate are knots which do not admit Conway spheres. In this paper we solve the above problem for knots which do not admit Conway spheres, in the following sense: we give upper bounds for the number of knots in the equivalence class [K] of a knot K and we describe how the different knots in the equivalence class of K are related. Received: 3 August 1998 / in final form: 17 June 1999  相似文献   

18.
The augmented Lagrangian method is attractive in constraint optimizations. When it is applied to a class of constrained variational inequalities, the sub-problem in each iteration is a nonlinear complementarity problem (NCP). By introducing a logarithmic-quadratic proximal term, the sub-NCP becomes a system of nonlinear equations, which we call the LQP system. Solving a system of nonlinear equations is easier than the related NCP, because the solution of the NCP has combinatorial properties. In this paper, we present an inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities, in which the LQP system is solved approximately under a rather relaxed inexactness criterion. The generated sequence is Fejér monotone and the global convergence is proved. Finally, some numerical test results for traffic equilibrium problems are presented to demonstrate the efficiency of the method.   相似文献   

19.
Given an undirected graph G with penalties associated with its vertices and costs associated with its edges, a Prize Collecting Steiner (PCS) tree is either an isolated vertex of G or else any tree of G, be it spanning or not. The weight of a PCS tree equals the sum of the costs for its edges plus the sum of the penalties for the vertices of G not spanned by the PCS tree. Accordingly, the Prize Collecting Steiner Problem in Graphs (PCSPG) is to find a PCS tree with the lowest weight. In this paper, after reformulating and re-interpreting a given PCSPG formulation, we use a Lagrangian Non Delayed Relax and Cut (NDRC) algorithm to generate primal and dual bounds to the problem. The algorithm is capable of adequately dealing with the exponentially many candidate inequalities to dualize. It incorporates ingredients such as a new PCSPG reduction test, an effective Lagrangian heuristic and a modification in the NDRC framework that allows duality gaps to be further reduced. The Lagrangian heuristic suggested here dominates their PCSPG counterparts in the literature. The NDRC PCSPG lower bounds, most of the time, nearly matched the corresponding Linear Programming relaxation bounds.  相似文献   

20.
Let be a smooth fiber bundle whose total space is a symplectic manifold and whose fibers are Lagrangian. Let L be an embedded Lagrangian submanifold of E. In the paper we address the following question: how can one simplify the singularities of the projection by a Hamiltonian isotopy of L inside E? We give an answer in the case when dim and both L and M are orientable. A weaker version of the result is proved in the higher-dimensional case. Similar results hold in the contact category.?As a corollary one gets an answer to one of the questions of V. Arnold about the four cusps on the caustic in the case of the Lagrangian collapse. As another corollary we disprove Y. Chekanov's conjecture about singularities of the Lagrangian projection of certain Lagrangian tori in . Submitted: January 1998, revised: January 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号