首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.  相似文献   

2.
We synthesized four diphenylquinoxaline derivatives(SQs) with phenyl-thioether units, which combine photo-cleavable and hydrogen-abstracting groups in one molecule. The photochemistry and photopolymerization of SQs were investigated. SQs possess suitable UV-vis absorption in the range of 350-400 nm with high extinction coefficients. UV-vis and HPLC-MS spectra revealed that C–S bond in phenyl-thioether group of SQs can be broken by irradiation of UV-light. Photolysis and photopolymerization experiments showed that SQs can be used as photo-cleavable photointiators,their photoinitiating efficiency can be enhanced by hydrogen donor. As photo-cleavable photoinitiators,SQs could initiate hexamethylene diacrylate(HDDA) very efficiently with the double bond conversion(DBC) of 80%. In the presence of ethyl-4-(dimethylamino) benzoate(EDB) as coinitiator, photoinitiator systems initiated photopolymerization of commercial acrylate monomers with higher double bond conversion than 90%. These characteristics make SQs potential photoinitiators in photo-curing field.  相似文献   

3.
Polyoxymethylene (POM, polyacetal) is one of the most popular plastics for machine elements, especially in Japan. However, it is difficult to use it under severe operating conditions such as high speed and high contact pressure. Diamond-like carbon (DLC) coatings were well known to be tribological and functional coatings. However, both POM and DLC coatings are difficult to adhere them each other. In the present paper, DLC coatings are deposited by plasma-based ion implantation and deposition (PBIID) method on POM substrate, and validity of DLC coatings on POM was investigated through friction and mechanical tests. When gas pressure was 0.2 and 0.8 Pa, hardness and adhesion properties of DLC coating deposited under gas pressure of 0.5 Pa were lower compared with under 0.2 and 0.8 Pa. For preparing DLC coatings having hard and good adhesion properties, relatively thin substrate was suitable. A correlation between relative humidity in the laboratory and friction coefficient was confirmed while DLC coatings remain on the substrate.  相似文献   

4.
UV-curable silicones are a highly specialised class of compounds that can be applied in various applications e.g. as additives in UV-curable inks and coatings or as release coatings on paper and plastic substrates. Basically two classes of radiation curable silicones are available on the market today. Both, the free radical and the cationic curing process, offer each unique advantages to the customer. Applied as additives in UV-curable inks and coatings they offer several advantages such as improved wetting behaviour, scratch resistance, flow and levelling of the UV-curable inks and coatings. Additionally, the efficient cross-linking properties minimise the risk of migration.  相似文献   

5.
6.
Cotton fabric was treated with two-component water- and oil-repellent antimicrobial coatings consisting of the commercial aqueous organic–inorganic hybrid precursors fluoroalkyl-functional siloxane (FAS) and 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (SiQAC) of different concentrations. Two different application procedures were used: a one-step treatment (S1) by a sol mixture consisting of both precursors [coating FAS-SiQAC (S1)] and a two-step treatment (S2) by SiQAC sol and then FAS sol [coating SiQAC + FAS (S2)]. The functional properties of the coatings were determined from liquid contact angle measurements and antimicrobial activity, as well as FTIR and XPS analyses. Although both treatments gave the cotton fabric superhydrophobic and oleophobic properties at a sufficient sol concentration, procedure S1 was found to be more effective than procedure S2. The antibacterial properties of the SiQAC + FAS (S2) coating were superior to those of the FAS-SiQAC (S1) coating. For both two-component coatings, the active bacteriostatic activity of SiQAC was enhanced by the passive antibacterial activity of FAS. Two-component coatings did not provide significant antifungal protection. Repetitive washing gradually deteriorated both coatings but the coating applied by procedure S2 seemed to be slightly more durable than that applied by S1. The two-component coatings caused an increase in the flexibility and a slight decrease in the fabric breaking strength and air permeability of the cotton sample.  相似文献   

7.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm?2 V?1 s?1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.  相似文献   

8.
We present femto-to-millisecond studies of the photodynamics of seven types of indole-based squaraine molecules (SQs) in solvents of different H-bonding ability and viscosity. These SQs can be classified into two families: SQs with two carboxylic groups in the side indole groups (symmetrical SQs) and with only one carboxylic group (asymmetrical SQs). Steady-state absorption and fluorescence techniques show narrow absorption and emission bands, with a small Stokes shift (about 300 cm(-1)). The femtosecond transient absorption spectra give a very short (~100 fs) dynamics (assigned to IVR) and the associated spectra show two excited species assigned to two stereoisomers. A trans-cis photoisomerization occurs in a very fast time through a conical intersection. Pico-to-nanosecond emission experiments also reveal the presence of two fluorescing trans stereoisomers whose lifetimes show similar sensitivities to the nature of solvent. For example, lifetimes of 1.72, 0.46 and 0.29 ns were determined for the trans photoisomer of the SQ 41 in triacetin, dichloromethane and acetonitrile, respectively, reflecting the short decay of the S(1) state in highly polar and low viscous solvents. Flash photolysis experiments gave the transient absorption signals of the cis photoisomer that is formed after the twisting process at S(1). The cis-to-trans photoisomerization at the ground state happens in the μs time scale (1-4 μs), and it depends on the H-bonding ability and viscosity of the solvent. Thus, combining fs-ns and ns-μs experiments suggests that in the conical intersection region, only a small fraction of the twisted trans isomers are converted to the cis ones in the excited states. These results bring detailed and global insight into the large time window photodynamics of this family of SQs in solution.  相似文献   

9.
SiO2 coatings and inorganic/organic polymer hybrid coatings were applied onto textiles, and the textile properties were investigated with respect to parameters of textile comfort as stiffness, water uptake, and air permeability. Two different types of textiles (viscose and polyamide) were dip-coated with coating solutions of a pure silica sol and a polymer-modified silica sol. Only with low concentrated coating solutions a sufficient low stiffness and therefore an appropriate textile comfort could be realized. Analogously the water uptake of the treated textiles was decreased and sufficient high values were only reached with highly diluted coating solutions. Therefore, it was investigated whether such diluted coating solutions could be used for modification of textiles to add new beneficial properties. To reach hydrophobic textile properties one sol was modified with perfluorooctyltriethoxysilane. For antimicrobial functionalization a second sol was modified with silver. It was shown, for the application of new textile properties like water repellency or antimicrobial activity only concentrations ≤1% were necessary. In this case, the increase of textile stiffness was appropriate low, so the textile comfort was preserved while new functional properties were applied. Therefore, the presented diluted coating agents could be appropriate means for textile refinement and offer new textile applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1562–1568, 2010  相似文献   

10.
Nanostructures have a wide range of potential applications in industry because they can impart novel mechanical or functional properties to coatings such as abrasion resistance, UV shielding, superhydrophobicity. In this work we present a method for the fabrication of nanostructured coatings with improved mechanical properties, in which sol–gel nanoparticles are deposited on a surface and embedded in a ceramic film by plasma-enhanced chemical vapour deposition. This synthetic strategy is applied to the fabrication of transparent nanostructured antiscratch coatings.  相似文献   

11.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Ambient-curable polysiloxane coatings were prepared by hydrolysis and condensation of 3-methacryloxypropylmethyldimethoxysilane (MPDS) and methyltriethoxysilane (MTES) and subsequently mixing with 3-aminopropyltriethoxysilane (APS). The structures of the as-obtained polysiloxane oligomers as well as the dried polysiloxane coatings on tinplate substrates were analyzed by FTIR and 29Si NMR. The mechanical properties of the coatings were thoroughly examined at both macro-level and micro-level using a pendulum hardness rocker, an impact tester, and a nanoindentation/nanoscratch instrument. Effects of the molar ratio of MPDS/MTES, the dosage of aqueous ammonia solution, and the catalytic condition on the structure of polysiloxane oligomers as well as the structure and mechanical properties of the polysiloxane coatings were investigated. The dried coatings with thickness of 15–26 μm are highly elastic. The hardness (Koenig hardness and microhardness), impact resistance and scratch resistance are mainly dependent on the condensation degree of polysiloxane coatings rather than on the organic component of the coatings. A proper pre-hydrolysis process or more APS is benefit for enhancing the mechanical strength of the polysiloxane coatings. Polysiloxane coatings with high hardness and excellent scratch resistance can be prepared preferentially at low molar ratio of MPDS/MTES.  相似文献   

13.
A facile method for the preparation of silica/silicone nanofilament hybrid coatings with almost perfect superhydrophobicity (contact angle=179.8° and sliding angle=1.3°) is presented. The coatings are obtained by dip‐coating of silica nanoparticles, followed by chemical vapor deposition of silicone nanofilaments. Predominant growth of silicone nanofilaments onto aggregated silica nanoparticles generates a two‐tier structure. The effect of silica nanoparticle size on the growth of silicone nanofilaments, along with their anti‐wetting properties and transparency are investigated in detail. Surface roughness and anti‐wetting properties can be simply regulated by controlling the size of silica nanoparticles.  相似文献   

14.
This paper describes the effect of nanofillers, such as nanographite, nickel–zinc ferrite (NiZnFerrite), and in‐house developed hybrid nanographite particles (i.e. iron‐coated nanographite [FeNG] and iron–nickel co‐deposited nanographite [FeNiNG] particles), on microwave‐absorption properties of thermoplastic polyurethane (TPU) based nanocomposite coatings on textile substrate. The flexible coatings were tested for various functional properties such as microwave absorbency, gas barrier property, impedance, and weather resistance. The comparison has also been made with other fillers such as bulk graphite (G) and iron powder (Fe) and carbon nanofiber (CNF) in coating form. The nanoparticles' dispersion was observed through optical microscope and phase image analysis on atomic force microscopy. The impedance behavior of such coated samples with 10 wt% nanofillers is frequency dependent except for CNF, which shows frequency‐independent behavior even at 2 wt% loading. The gas barrier property of the FeNG‐based and FeNiNG‐based coatings is better than that of pure TPU; however, G‐based, NG‐based, and NiZnFerrite‐based coatings show excellent barrier property. The coatings were evaluated for their microwave absorbency at low‐frequency (from 0.3 to 1.5 GHz) as well as high‐frequency (8–18 GHz) ranges. The FeNG‐based and FeNiNG‐based nanocomposite coatings showed good absorbency over a frequency range of 8 to 14 GHz as compared with those of others. The flexibility of the nanocomposite films is almost retained even at 10 wt% nanofiller loading. The weather resistance of the films was also evaluated, and the FeNiNG‐based coating outperformed the FeNG‐based coating as the latter is prone to oxidation on exposure to environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Lead dioxide coatings on inert substrates such as titanium and carbon now offer new opportunities for a material known for 150 years. It is now recognised that electrodeposition allows the preparation of stable coatings with different phase structures and a wide range of surface morphologies. In addition, substantial modification to the physical properties and catalytic activities of the coatings are possible through doping and the fabrication of nanostructured deposits or composites. In addition to applications as a cheap anode material in electrochemical technology, lead dioxide coatings provide unique possibilities for probing the dependence of catalytic activity on layer composition and structure (critical review, 256 references).  相似文献   

16.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

17.
[2.2]Paracyclophane (PCP) is a prevalent scaffold that is widely utilized in asymmetric synthesis, π‐stacked polymers, energy materials, and functional parylene coatings that finds broad applications in bio‐ and materials science. In the last few years, [2.2]paracyclophane chemistry has progressed tremendously, enabling the fine‐tuning of its structural and functional properties. This Minireview highlights the most important recent synthetic developments in the selective functionalization of PCP that govern distinct features of planar chirality as well as chiroptical and optoelectronic properties. Special focus is given to the function‐inspired design of [2.2]paracyclophane‐based π‐stacked conjugated materials by transition‐metal‐catalyzed cross‐coupling reactions. Current synthetic challenges, limitations, as well as future research directions and new avenues for advancing cyclophane chemistry are also summarized.  相似文献   

18.
在微波电离型原子氧 (AO)源地面模拟设备中对空间材料Ag及TiO2 K2 SiO3 无机涂层进行原子氧剥蚀效应试验 .用扫描电镜 (SEM)、光电子能谱 (XPS)、红外光谱 (FT IR)、X射线衍射光谱 (XRD)和LAMBDA 9分光光度计 ,对在模拟原子氧(AO)环境中Ag及在其表面涂覆的无机涂层 ,所发生的侵蚀与防护作用进行了表征研究 .AO对Ag表现了较严重的侵蚀作用 ,原来光亮如镜的表面形貌变得粗糙 ,且失去光泽 .而所施用的TiO2 K2 SiO3 无机涂层 ,经AO辐照后 ,表面形貌则变化甚少 .实验表明 ,该涂层对AO辐照有较强的防护效果、较好的空间稳定性 (AO辐照前后Δαs≈ 0 .0 2 4) ,能阻止AO对基材的侵蚀 .  相似文献   

19.
Magnetite nanoparticles have been obtained with stable coatings formed from bovine and human serum albumins. The coatings are fixed by free-radical cross-linking of the proteins with the use of their ability to form interchain covalent bonds under the action of free radicals, which are generated with participation of transition metals present on nanoparticle surface. The method of spectral and fluorescent probes has been employed for the first time to describe the properties of coatings with the use of various dyes. It has been shown that, when studying the adsorption and free-radical cross-linking of proteins on nanoparticles, it is reasonable to use polymethine and squarylium dyes for estimating the functional properties of the proteins forming the coatings. It has been found that as many as 50% of molecules forming an albumin coating crosslinked via the free-radical mechanism retain their capability of bonding to a fluorescent dye. It has been concluded that the proteins occurring in the structure of the coatings retain their functional properties.  相似文献   

20.
A perfect hybrid complex C60(FeCp)12 is predicted using density functional theory method. This fullerene derivative could be view as a C60 cage of which each C5 ring coordinates a (FeCp) ligand. Theoretical calculation reveals that it has a large lowest unoccupied molecular orbital–highest unoccupied molecular orbital gap (2.53 eV) and keeps the Ih symmetry of C60. But the C? C bond length of its inner C60 cage trends to be uniform, which is quite different from the bonding character of C60 fullerene. Further investigation reveals that the chemical bonding, TDOS and the aromaticity of the (C5FeCp) unit in C60(FeCp)12 are similar as those of ferrocene molecule, which indicates the similarity of their electronic properties. So, this compound could be viewed as the combination of ferrocene molecules. Thus, its unconventional formation process from 12 Fe(Cp)2 is proposed and the reaction energy is calculated. As the C60(FeCp)12 compound has the geometry framework as C60 and the electronic characters as ferrocene, it would inherit the outstanding properties from both two molecules and have wild potential applications in nanochemistry. We hope our study could give some references for the further investigation and experimental synthesis research of the C60(FeCp)12 compound. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号