首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
The diffusion tensor for a Brownian particle in a periodic field of force is studied in the strong damping limit, in which the Smoluchowski equation is valid.A general relation between the diffusion tensor and the Smoluchowski “relaxation operator” is derived; the effect of the periodic force, at least in the simplest situation of diagonal and uniform friction, appears as a dressing of the bare particle mass to an effective tensor mass.From this the explicit form of the diffusion coefficient as a functional of the potential energy in the one-dimensional case is obtained, showing a temperature dependence which deviates at high temperatures from a simple Arrhenius behaviour.Finally, the expression for the mobility of the Brownian particle is derived, and by comparison with the expression for the diffusion coefficient the Einstein relation between diffusion and mobility is proved to be satisfied.  相似文献   

2.
3.
A non-equilibrium steady state can be characterized by a nonzero but stationary flux driven by a static external force. Under a weak external force, the drift velocity is difficult to detect because the drift motion is feeble and submerged in the intense thermal diffusion. In this article, we employ an accurate method in molecular dynamics simulation to determine the drift velocity of a particle driven by a weak external force in a one-dimensional periodic potential. With the calculated drift velocity, we found that the mobility and diffusion of the particle obey the Einstein relation, whereas their temperature dependences deviate from the Arrhenius law. A microscopic hopping mechanism was proposed to explain the non-Arrhenius behavior. Moreover, the position distribution of the particle in the potential well was found to deviate from the Boltzmann equation in a non-equilibrium steady state. The non-Boltzmann behavior may be attributed to the thermostat which introduces an effective "viscous" drag opposite to the drift direction of the particle.  相似文献   

4.
The Einstein relation connecting the diffusion constant and the mobility is violated beyond the linear response regime. For a colloidal particle driven along a periodic potential imposed by laser traps, we test the recent theoretical generalization of the Einstein relation to the nonequilibrium regime which involves an integral over measurable velocity correlation functions.  相似文献   

5.
The Einstein relation, relating the steady state fluctuation properties to the linear response to a perturbation, is considered for steady states of stochastic models with a finite state space. We show how an Einstein relation always holds if the steady state satisfies detailed balance. More generally, we consider nonequilibrium steady states where detailed balance does not hold and show how a generalisation of the Einstein relation may be derived in certain cases. In particular, for the asymmetric simple exclusion process and a driven diffusive dimer model, the external perturbation creates and annihilates particles thus breaking the particle conservation of the unperturbed model.  相似文献   

6.
 A class of SOS interface models which can be seen as simplified stochastic Ising model interfaces is studied. In the absence of an external field the long-time fluctuations of the interface are shown to behave as Brownian motion with diffusion coefficient given by a Green-Kubo formula. When a small external field h is applied, it is shown that the shape of the interface converges exponentially fast to a stationary distribution and the interface moves with an asymptotic velocity v(h). The mobility is shown to exist and to satisfy the Einstein relation: , where β is the inverse temperature. Received: 16 April 2002 / Accepted: 3 July 2002 Published online: 22 November 2002 RID="*" ID="*" Work partially supported by the N.S.F. through grants DMS-0071766 and DMS-0074152.  相似文献   

7.
Einstein’s relation E = Mc 2 between the energy E and the mass M is the cornerstone of the relativity theory. This relation is often derived in a context of the relativistic theory for closed systems which do not accelerate. By contrast, the Newtonian approach to the mass is based on an accelerated motion. We study here a particular neoclassical field model of a particle governed by a nonlinear Klein-Gordon (KG) field equation. We prove that if a solution to the nonlinear KG equation and its energy density concentrate at a trajectory, then this trajectory and the energy must satisfy the relativistic version of Newton’s law with the mass satisfying Einstein’s relation. Therefore the internal energy of a localized wave affects its acceleration in an external field as the inertial mass does in Newtonian mechanics. We demonstrate that the “concentration” assumptions hold for a wide class of rectilinear accelerating motions.  相似文献   

8.
Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement delta2[over ] of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that delta2[over ] differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable delta2[over ]. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed.  相似文献   

9.
We investigate the dynamics of a quantum particle moving in a tight-binding lattice and coupled to a heat bath environment. Using the Feynman-Vernon influence functional method, we obtain an exact series representation in powers of the tunneling matrix for the generating functional of moments of the probability distribution which is valid for arbitrary temperatures and linear dissipation. We prove that the Einstein relation between the linear mobility and the diffusion coefficient holds to any order of the expansion for Ohmic, and for a restricted region of super-Ohmic dissipation. We also compute in the Ohmic case the mobility in certain regions of the parameter space. In particular, we find that the low temperature correction to the zero temperature mobility behaves asT 2, and we also determine the prefactor. Finally, the exact solution of the dynamics for any times, temperatures and bias is presented for a particular value of the damping strength in the case of strict Ohmic dissipation.  相似文献   

10.
We study the Hamiltonian motion of an ensemble of unconfined classical particles driven by an external field F through a translationally-invariant, thermal array of monochromatic Einstein oscillators. The system does not sustain a stationary state, because the oscillators cannot effectively absorb the energy of high speed particles. We nonetheless show that the system has at all positive temperatures a well-defined low-field mobility μ over macroscopic time scales of order exp (c/F), during which it finds itself in a metastable stationary state. The mobility is independent of F at low fields, and related to the zero-field diffusion constant D through the Einstein relation. The system therefore exhibits normal transport even though the bath obviously has a discrete frequency spectrum (it is simply monochromatic) and is therefore highly non-Ohmic. Such features are usually associated with anomalous transport properties.  相似文献   

11.
Both ionic solutions under an external applied static electric field E and glassy-forming liquids under undercooled state are in non-equilibrium state.In this work,molecular dynamics(MD)simulations with three aqueous alkali ion chloride(NaCl,KCl,and RbCl)ionic solutions are performed to exploit whether the glass-forming liquid analogous fractional variant of the Stokes–Einstein relation also exists in ionic solutions under E.Our results indicate that the diffusion constant decouples from the structural relaxation time under E,and a fractional variant of the Stokes–Einstein relation is observed as well as a crossover analogous to the glass-forming liquids under cooling.The fractional variant of the Stokes–Einstein relation is attributed to the E introduced deviations from Gaussian and the nonlinear effect.  相似文献   

12.
 It is known that the rescaled position of a tagged particle in symmetric simple exclusion processes converges to a diffusion. If now the tracer particle is driven by a small force, then it picks up a velocity. The Einstein relation states that in the limit, this velocity is proportional to the small force, and the constant of proportionality can be computed from the diffusion matrix of the tracer particle with no driving force. Such a relation is believed to be generally valid. In this article we establish its validity for all symmetric simple exclusion processes in dimension and we prove a density property for certain invariant states of the driven system. Received: 2 September 2001 / Accepted: 28 March 2002 Published online: 31 July 2002  相似文献   

13.
We study the conductivity of a Lorentz gas system, composed of a regular array of fixed scatterers and a point-like moving particle, as a function of the strength of an applied external field. In order to obtain a nonequilibrium stationary state, the speed of the point particle is fixed by the action of a Gaussian thermostat. For small fields the system is ergodic and the diffusion coefficient is well defined. We show that in this range the Periodic Orbit Expansion can be successfully applied to compute the values of the thermodynamic variables. At larger values of the field we observe a variety of possible dynamics, including the breakdown of ergodic behavior, and later the existence of a single stable trajectory for the largest fields. We also study the behavior of the system as a function of the orientation of the array of scatterers with respect to the external field. Finally, we present a detailed dynamical study of the transitions in the bifurcation sequence in both the elementary cell and the fundamental domain. The consequences of this behavior for the ergodicity of the system are explored. (c) 1995 American Institute of Physics.  相似文献   

14.
孙科伟  熊诗杰 《中国物理》2006,15(4):828-832
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases. We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.  相似文献   

15.
N. Tankovsky  E. Syrakov 《Ionics》2008,14(6):525-531
The nonlinear differential equations, describing the migration and diffusion of ions in electrolytic cell with blocking electrodes, driven by external electric field, have been solved with the help of a numerical algorithm. Usually, the dynamical equations are simplified by applying the Einstein–Nernst relation between diffusion and mobility, although this relation is valid for stationary, time-independent variables. In the present work, we have introduced correction terms, to take into account transient ion currents when external stepwise voltage is switched on. The correction terms are defined and numerically evaluated. The transient behavior of the system described without corrections is compared to the transients when corrections are applied. The results are examined for different regimes and parameters of the system.  相似文献   

16.
By bearing the Komar’s definition for the mass, together with the entropic origin of gravity in mind, we find the Einstein field equations in (n + 1)-dimensional spacetime. Then, by reflecting the (4 + 1)-dimensional Einstein equations on the (3 + 1)-hypersurface, we get the Einstein equations onto the 3-brane. The corresponding energy conditions are also addressed. Since the higher dimensional considerations modify the Einstein field equations in the (3 + 1)-dimensions and thus the energy-momentum tensor, we get a relation for the Komar mass on the brane. In addition, the strongness of this relation compared with existing definition for the Komar mass on the brane is addressed.  相似文献   

17.
The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.  相似文献   

18.
We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle.  相似文献   

19.
We present a direct experimental measurement of an effective temperature in a colloidal glass of laponite, using a micrometric bead as a thermometer. The nonequilibrium fluctuation-dissipation relation, in the particular form of a modified Einstein relation, is investigated with diffusion and mobility measurements of the bead embedded in the glass. We observe an unusual nonmonotonic behavior of the effective temperature: starting from the bath temperature, it is found to increase up to a maximum value, and then decrease back, as the system ages. We show that the observed deviation from the Einstein relation is related to the relaxation times previously measured in dynamic light scattering experiments.  相似文献   

20.
In this paper, we have searched the existence of the similarity solution for plane symmetric inhomogeneous cosmological models in general relativity. The matter source consists of perfect fluid with proportionality relation between expansion scalar and shear scalar. For this, Lie group analysis is used to identify the generator (isovector fields) that leave the given system of PDEs (Einstein’s field equations) invariant for the models under consideration. A new class of exact solutions of Einstein’s field equation have been obtained for inhomogeneous space-time. The physical behaviors and geometric aspects of the derived models have been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号