首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS(1) spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 microL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes.  相似文献   

2.
The goal of this study was to determine the utility of adding ion mobility spectrometry to studies probing the solution-phase hydrogen/deuterium exchange (HX) of proteins. The HX profile of the Hck SH3 domain was measured at both the intact protein and the peptic peptide levels in the Waters Synapt HDMS system which uses a traveling wave to accomplish ion mobility separation prior to time-of-flight (Tof) m/z analysis. The results indicated a similar loss of deuterium with or without use of mobility in the Synapt and a level of deuterium loss comparable with a non-mobility Q-Tof instrument. The drift time of this small protein and its peptic peptides did not noticeably change due to solution-based deuterium incorporation. Importantly, ion mobility separations provided an orthogonal dimension of separation in addition to the reversed-phase high-performance liquid chromatography (RP-HPLC). The additional dimension of separation allowed for the deconvolution of overlapping isotopic patterns for co-eluting peptides and extraction of valuable deuterium incorporation data for those peptides. Taken together, these results indicate that including ion mobility separation in HX MS analyses further improves the mass spectrometry portion of such experiments. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Discovery of EX1 kinetics in hydrogen exchange (HX) mass spectrometry (MS) experiments is rare. Proteins follow the EX1 kinetic regime when cooperative unfolding events simultaneously expose multiple residues to solvent such that they all become deuterated together before the region is able to refold. A number of factors can contribute to what we call "false EX1" in which it appears as though EX1 occurs in a protein when it probably does not. One of the contributors to false EX1 is peptide carryover between chromatographic runs. In this work, we explore the origins of peptide carryover in HX MS, describe how carryover causes mass spectra to indicate false EX1 kinetics and then describe an optimized washing protocol that can be used to eliminate peptide carryover. A series of solvent injections was developed and found to efficiently eliminate carryover signatures such that analysis of deuterium incorporation could be reliably followed for two proteins prone to high carryover.  相似文献   

4.
Specific protein–protein interactions are critical to cellular function. Structural flexibility and disorder‐to‐order transitions upon binding enable intrinsically disordered proteins (IDPs) to overcome steric restrictions and form complementary binding interfaces, and thus, IDPs are widely considered to have high specificity and low affinity for molecular recognition. However, flexibility may also enable IDPs to form complementary binding interfaces with misbinding partners, resulting in a great number of nonspecific interactions. Consequently, it is questionable whether IDPs really possess high specificity. In this work, we investigated this question from a thermodynamic viewpoint. We collected mutant thermodynamic data for 35 ordered protein complexes and 43 disordered protein complexes. We found that the enthalpy–entropy compensation for disordered protein complexes was more complete than that for ordered protein complexes. We further simulated the binding processes of ordered and disordered protein complexes under mutations. Simulation data confirmed the observation of experimental data analyses and further revealed that disordered protein complexes possessed smaller changes in binding free energy than ordered protein complexes under the same mutation perturbations. Therefore, interactions of IDPs are more malleable than those of ordered proteins due to their structural flexibility in the complex. Our results provide new clues for exploring the relationship between protein flexibility, adaptability, and specificity.  相似文献   

5.
Analysis of protein complexes is of increasing interest in the field of proteomics. A challenge is to develop methods for monitoring changes in the quantity and subunit composition of protein complexes on a proteome-wide scale. Here, we describe the combination of 1-D blue native polyacrylamide gel electrophoresis (BN-PAGE) with stable isotope labelling of amino acids in cell culture (SILAC) and tandem mass spectrometry (MS/MS). Cleared lysates from normal and perturbed samples, one incorporating heavy stable isotopes and the other light isotopes, are co-separated by blue native PAGE and then analysed and quantitated with MS/MS and appropriate software. This permits the analysis of cytoplasmic complexes. To demonstrate this technique, we explored how the 20S proteasome changes when the Pre9/α3 subunit, the only non-essential subunit of this complex, was deleted. Our results showed that ΔPre9/α3 cells can form the 20S proteasome complex, although with reduced efficiency. This involves an increase in expression of the α4 subunit. Our findings suggest this technique as an approach for the study of quantitative and qualitative differences in protein complexes, from cleared cell lysates.  相似文献   

6.
The use of Fourier transform mass spectrometry (FTMS) to monitor noncovalent complex formation in the gas phase under native conditions between the Link module from human tumor necrosis factor stimulated gene-6 (Link_TSG6) and hyaluronan (HA) oligosaccharides is reported. In particular, a titration experiment with increasing concentrations of octasaccharide (HA(8)) to protein produced a noncovalent complex with 1:1 stoichiometry when the oligosaccharide was in molar excess. However, in the presence of a molar excess of tetrasaccharide (HA(4)) nearly all proteins and oligosaccharides were observed in their unbound charge states. These results are consistent with solution-phase properties for this interaction in which HA(8), but not HA(4), supports high affinity Link_TSG6 binding. Hydrogen/deuterium amide exchange mass spectrometry (H/D-EX MS) was also utilized to investigate the level of global deuterium incorporation, over time, for Link_TSG6 in both the absence and presence of HA(8). After dilution into quenching conditions, deuterium incorporation reached limiting asymptotic values of 37 and 26 deuterons for the free and bound protein at 240 and 480 min, respectively, indicating that the oligosaccharide interferes with amide exchange on binding. To detect sequence-specific deuterium incorporation, pepsin digestion of Link_TSG6 in both the absence and presence of HA(8) was performed. A level of deuterium incorporation of 10-30% was observed for peptides analyzed in free Link_TSG6. Interestingly, HA(8) blocked some sites of proteolysis in Link_TSG6 compared to the free protein. Molecular modeling indicated that amino acids proximal to the ligand correlated with regions of the protein that were resistant to enzymatic digestion. Of the peptides that could be analyzed by H/D-EX MS in the presence of the ligand, a 30-60% reduction in deuterium incorporation, relative to the free protein, was observed, even for those sequences not directly involved in HA binding. These results support the utility of FTMS as a method for the characterization of protein-carbohydrate interactions.  相似文献   

7.
To understand how proteins perform their function, knowledge about their structure and dynamics is essential. Here we use a combination of an efficient chemical lysine acetylation reaction and nanoLC-MALDI tandem mass spectrometry to probe the accessibility of every lysine residue in a protein complex. To demonstrate the applicability of this approach, we studied the interaction between the DNase domain of Colicin E9 (E9) and its immunity protein Im9. Free E9 and E9 in complex with Im9 were rapidly acetylated, followed by proteolytic digestion and analysis by LC-MALDI-TOF/TOF MS/MS. Acetylated peptides could be filtered out of the complex peptide mixtures using selective ion chromatograms of the specific immonium marker ions. Additionally, isobaric acetylated peptides, acetylated at different sites, could be separated by their LC retention times. The combination of LC and MALDI-TOF/TOF MS/MS provided information about the amount of acetylation on each individual lysine even for peptides containing several lysine residues. In general, our data agree well with those derived from the crystal structure of E9 and the E9:Im9 complex. Interestingly, next to in the binding interface expected lysines, K89 and K97, two from the crystal structure data unexpected lysines, K81 and K76, were observed to become less exposed upon Im9 binding. Moreover, K55 and K63, positioned in the predicted DNA binding region, were also found to be less accessible upon Im9 binding. These findings may illustrate some of the described differences in the solution-phase structure of the E9:Im9 complex compared with the crystal structure.  相似文献   

8.
The characterization of low‐affinity protein complexes is challenging due to their dynamic nature. Here, we present a method to stabilize transient protein complexes in vivo by generating a covalent and conformationally flexible bridge between the interaction partners. A highly active pyrrolysyl tRNA synthetase mutant directs the incorporation of unnatural amino acids bearing bromoalkyl moieties (BrCnK) into proteins. We demonstrate for the first time that low‐affinity protein complexes between BrCnK‐containing proteins and their binding partners can be stabilized in vivo in bacterial and mammalian cells. Using this approach, we determined the crystal structure of a transient GDP‐bound complex between a small G‐protein and its nucleotide exchange factor. We envision that this approach will prove valuable as a general tool for validating and characterizing protein–protein interactions in vitro and in vivo.  相似文献   

9.
Hydrogen/deuterium exchange measurements by mass spectrometry (HX-MS) can be used to report localized conformational mobility within folded proteins, where exchange predominantly occurs through low energy fluctuations in structure, allowing transient solvent exposure. Changes in conformational mobility may impact protein function, even in cases where structural changes are unobservable. Previous studies of the MAP kinase, ERK2, revealed increases in HX upon activation occured at the hinge between conserved N- and C-terminal domains, which could be ascribed to enhanced backbone flexibility. This implied that kinase activation modulates interdomain closure, and was supported by evidence for two modes of nucleotide binding that were consistent with closed vs open conformations in active vs inactive forms of ERK2, respectively. Thus, phosphorylation of ERK2 releases constraints to interdomain closure, by modulating hinge flexibility. In this study, we examined ERK1, which shares 90% sequence identity with ERK2. HX-MS measurements of ERK1 showed similarities with ERK2 in overall deuteration, consistent with their similar tertiary structures. However, the patterns of HX that were altered upon activation of ERK1 differed from those in ERK2. In particular, alterations in HX at the hinge region upon activation of ERK2 did not occur in ERK1, suggesting that the two enzymes differ with respect to their regulation of hinge mobility and interdomain closure. In agreement, HX-MS measurements of nucleotide binding suggested revealed domain closure in both inactive and active forms of ERK1. We conclude that although ERK1 and ERK2 are closely related with respect to primary sequence and tertiary structure, they utilize distinct mechanisms for controlling enzyme function through interdomain interactions.  相似文献   

10.
Although the use of hydrogen exchange (HX) mass spectrometry (MS) to study proteins and protein conformation is now over 20 years old, the perception lingers that it still has “issues.” Is this method, in fact, still in the quicksand with many remaining obstacles to overcome? We do not think so. This critical insight addresses the “issues” and explores several broad questions including, have the limitations of HX MS been surmounted and has HX MS achieved “indispensable” status in the pantheon of protein structural analysis tools.  相似文献   

11.
Plant non-specific lipid-transfer proteins (nsLTPs) are small basic proteins which transport phospholipids between different cell membranes. They are classified, based on their molecular weight, into two subfamilies: nsLTP1 (9 kDa) and nsLTP2 (7 kDa). These proteins have received an increasing research interest as efficient drug carriers in drug delivery systems. However, there have been few studies conducted on their drug-binding characteristics. The present study aims to comparatively evaluate binding of amphotericin B (AmB, an antifungal drug) to the native and modified forms of rice nsLTP1 and to assess possible applications in drug delivery methods. The LTP1 was purified and then interaction of AmB with the native and modified forms of protein was investigated with various spectroscopic methods. The results showed that the AmB–LTP binding is associated with quenching of the protein intrinsic fluorescence. Furthermore, as temperature of the medium increased, the stability of the AmB–native LTP complex decreased, whereas the stability of the AmB–modified LTP increased. Analysis of the thermodynamic parameters of the AmB–protein complexes and extrinsic fluorescence data indicated that the lysine modification caused a change in the intermolecular interactions between the protein and AmB as well as in the protein surface hydrophobicity (PSH). Furthermore, Dixon plot showed that AmB inhibits ANS binding especially in the AmB–modified RLTP binding. Findings of the current study highlighted the drug-binding characteristics of the modified form of LTP necessitating further studies to profoundly evaluate the characteristics of its mutant forms.  相似文献   

12.
Numerous protein–polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein–ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP–tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP–tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5·EgCG complexes are maintained intact in the gas phase.   相似文献   

13.
Hydrogen deuterium exchange mass spectrometry (HDX‐MS) is a powerful technique for studying protein dynamics, which is an important factor governing protein functions. However, the process of hydrogen/deuterium exchange (HDX) of proteins is highly complex and the underlying mechanism has not yet been fully elucidated. Meanwhile, molecular dynamics (MD) simulation is a computational technique that can be used to elucidate HDX behaviour on proteins and facilitate interpretation of HDX‐MS data. This article aims to summarize the current understandings on the mechanism of HDX and its correlation with MD simulation, to discuss the recent developments in the techniques of HDX‐MS and MD simulation and to extend the perspectives of these two techniques in protein dynamics study.  相似文献   

14.
Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three‐dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X‐ray crystallography. Structural MS unites different MS‐based techniques, such as hydrogen/deuterium exchange, native MS, ion‐mobility MS, protein footprinting, and chemical cross‐linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross‐linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross‐linking/MS is currently one of the most promising MS‐based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins.  相似文献   

15.
The properties of noncovalent complexes of the enzyme exo-1,4-β-D-glycanase (“Cex”) with three aza-sugar inhibitors, deoxynojirimycin (X2DNJ), isofagomine lactam (X2IL), and isofagomine (X2IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation “remember” their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.  相似文献   

16.
The interactions of alkali fluorides with D-xylose have been studied by X-ray diffraction (XRD), infrared spectroscopy (IR), nuclear magnetic resonance (NMR, 1H and 13C) and atomic absorption spectrophotometry. KF and CsF form complexes with D-xylose in a 1:1 molar ratio. These complexes can be obtained by solid state milling the reactants in an agate mortar or from methanolic solutions of the sugar and the salt. LiF and NaF do not form complex with D-xylose. IR and XRD prove the identical nature of the complexes obtained by milling and from solution. IR spectra indicate strong perturbation of the OH stretching vibrations with considerable shifts to lower frequencies, which must be caused by strong hydrogen bond formation to the fluorine anion. The perturbations of C-O bond are weak, indicating that cation binding to the oxygen atoms is not the main interaction responsible for the complex formation. 1H NMR spectra of the D-xylose-KF complex dissolved in deuterium oxide is equal to that of pure D-xylose, indicating the destruction of the complex in solution. The complex is stable in DMSO, and 13C spectra of the complex in DMSO-d6 and in solid state (CPMAS) spectra are in accordance with the observed interactions in the IR spectra. As far as we know, this is the first report of a sugar-halide salt complex in which the anion instead of the cation provides the binding forces.  相似文献   

17.
In this report, we evaluate the validity of using hydrogen/deuterium exchange in combination with collision-induced dissociation mass spectrometry (CID MS) for the detailed structural and conformational investigation of peptides and proteins. This methodology, in which partly deuterated peptide ions are subjected to collision-induced dissociation in the vacuum of a mass spectrometer, has emerged as a useful tool in structural biology. It may potentially provide quantitatively the extent of deuterium incorporation per individual amino acid in peptides and proteins, thus providing detailed structural information related to protein structure and folding. We report that this general methodology has limitations caused by the fact that the incorporated deuterium atoms migrate prior or during the CID MS analysis. Our data are focused on a variety of transmembrane peptides, incorporated in a lipid bilayer, in which the near-terminal amino acids that anchor at the lipid-water interface are systematically varied. Our findings suggest that, under the experimental conditions we use, the extent of intramolecular hydrogen scrambling is strongly influenced by experimental factors, such as the exact amino acid sequence of the peptide, the nature of the charge carrier, and therefore most likely by the gas-phase structure of the peptide ion. Moreover, the observed scrambling seems to be independent of the nature of the peptide fragment ions (i.e., protonated B and Y' ' ions, and sodiated A and Y' ions). Our results strongly suggest that scrambling may be reduced by using alkali metal cationization instead of protonation in the ionization process.  相似文献   

18.
Noncovalent protein–ligand and protein–protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein–ligand interactions. In this way the site of protein–ligand interfaces can be identified. To date, protein–ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein–peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein–peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide–protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein–protein interfaces.  相似文献   

19.
The chiral complexation of bilirubin (BR) with bovine and human serum albumin (BSA and HSA), and the aggregation of the complexes at the heptane+chloroform(5:1)/water interface were studied via UV/Vis absorption and circular dichroism (CD) measurements in combination with the centrifugal liquid membrane (CLM) method. The interfacial adsorptivities of BR, BSA and their complexes were also studied by performing interfacial tension measurements at the interface. The changes in the absorbances and the induced CD amplitudes of the interfacial BR-BSA complex provided insights into the mechanism of the conformational enantioselective complexation at the interface, and indicated that the chiral conversion induced by the complexation with BSA was from the P(+) form to the M(-) form of BR. The broadening of the 450 nm band and the appearance of a new shoulder at 474 nm further supported the formation of aggregates of the complexes at the interface. The dependence of the CD amplitude on the molar ratio of BSA to BR revealed that the composition of the complex was 1:1 BSA:BR. The probable interfacial reaction scheme was proposed, and the affinity constant of BR-BSA at the interface was found to be 4.67 x 10(8) M(-2). The interfacial complexation and aggregation of BR and HSA were weaker than those of the BR-BSA complex due to the different BR binding positions adopted for BSA and HSA and the binding effect of chloroform.  相似文献   

20.
Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein complexes we report the development of a native DESI platform. By establishing conditions that preserve non‐covalent interactions we exploit the surface to capture a rapid turnover enzyme–substrate complex and to optimise detergents for membrane protein study. We demonstrate binding of lipids and drugs to membrane proteins deposited on surfaces and selectivity from a mix of related agonists for specific binding to a GPCR. Overall therefore we introduce this native DESI platform with the potential for high‐throughput ligand screening of some of the most challenging drug targets including GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号