首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the Allen–Cahn equation in a bounded, smooth domain Ω in , under zero Neumann boundary conditions, where is a small parameter. Let Γ0 be a segment contained in Ω, connecting orthogonally the boundary. Under certain nondegeneracy and nonminimality assumptions for Γ0, satisfied for instance by the short axis in an ellipse, we construct, for any given N ≥ 1, a solution exhibiting N transition layers whose mutual distances are and which collapse onto Γ0 as . Asymptotic location of these interfaces is governed by a Toda-type system and yields in the limit broken lines with an angle at a common height and at main order cutting orthogonally the boundary.  相似文献   

2.
Mass conservation and linear momentum balance relations for a porous body and any fluid therein, valid at any given length scale in excess of nearest-neighbour molecular separations, are established in terms of local weighted averages of molecular quantities. The mass density field for the porous body at a given scale is used to identify its boundary at this scale, and a porosity field is defined for any pair of distinct length scales. Specific care is paid to the interpretation of the stress tensor associated with each of the body and fluid at macroscopic scales, and of the force per unit volume each exerts on the other. Consequences for the usual microscopic and macroscopic viewpoints are explored.Nomenclature material system; Section 2.1. - porous body (example of a material system); Sections 2.1, 3.1, 4.1 - fluid body (example of a material system); Sections 2.1, 3.1, 4.1 - weighting function; Sections 2.1, 2.3 - ,h weighting function corresponding to spherical averaging regions of radius and boundary mollifying layer of thicknessh; Section 3.2 - Euclidean space; Section 2.1 - V space of all displacements between pairs of points in; Section 2.1 - mass density field corresponding to; (2.3)1 - P , f mass density fields for , ; (4.1) - P momentum density field corresponding to; (2.3)2 - v velocity field corresponding to; (2.4) - S r (X) interior of sphere of radiusr with centre at pointx; (3.3) - boundary ofany region - region in which p > 0 with = ,h; (3.1) - subset of whose points lie at least+h from boundary of ; (3.4) - abbreviated versions of ; Section 3.2, Remark 4 - strict interior of ; (3.7) - analogues of for fluid system ; Section 3.2 - general version of corresponding to any choice of weighting function; (4.6) - interfacial region at scale; (3.8) - 0 scale of nearest-neighbour separations in ; Section 3.2. Remark 1 - porosity field at scales ( 1; 2); (3.9) - pore space at scales ( 1; 2); (3.12)  相似文献   

3.
In this paper, we study a free boundary problem obtained as a limit as ε → 0 to the following regularizing family of semilinear equations , where β ε approximates the Dirac delta in the origin and F is a Lipschitz function bounded away from 0 and infinity. The least supersolution approach is used to construct solutions satisfying geometric properties of the level surfaces that are uniform in ε. This allows to prove that the free boundary of a limit has the “right” weak geometry, in the measure theoretical sense. By the construction of some barriers with curvature, the classification of global profiles of the blow-up analysis is carried out and the limit functions are proven to be viscosity and pointwise solution ( almost everywhere) to a free boundary problem. Finally, the free boundary is proven to be a C 1,α surface around almost everywhere point. An erratum to this article can be found at  相似文献   

4.
We study the limit as ε → 0 of the entropy solutions of the equation . We prove that the sequence u ε two-scale converges toward a function u(t, x, y), and u is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in .  相似文献   

5.
Assuming the formation of doublets in the flow according to a mass action law, the shear rate and the concentration dependence of the extinction angle, of the birefringence, and of the average coil expansion are calculated for dilute solutions of flexible macromolecules. It is shown that this reversible association process has a strong influence on the measurable parameters in a flow birefringence experiment. c concentration (g/cm3) - h 2 mean square end-to-end distance at shear rate - h 0 2 mean-square end-to-end distance at zero-shear rate - n refractive index of the solution (not very different from the solvent for a very dilute solution) - E mean coil expansion - K 0,K constant of the mass action law - M molecular weight - R G gas constant - T absolute temperature - 12 optical anisotropy of the segment - 0 Deborah number: - Deborah number: - shear rate - 0, reduced concentration - s viscosity of the solvent - [] 0 intrinsic viscosity at zero-shear rate - [] intrinsic viscosity at shear rate - extinction angle - N a Avodagro's number - n magnitude of the birefringence  相似文献   

6.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

7.
We study the limit as ε → 0 of the solutions of the equation . This problem has already been addressed in a previous article in the case of well-prepared initial data, i.e. when the microscopic profile of the solution is adapted to the medium at time t = 0. Here, we prove that when the initial data is not well prepared, there is an initial layer during which the solution adapts itself to match the profile dictated by the environment. The typical size of the initial layer is of order ε. The proof relies strongly on the parabolic form of the equation; in particular, no condition of nonlinearity on A is required.  相似文献   

8.
We consider a mixed boundary-value problem for a Poisson equation in a plane two-level junction Ωε that is the union of a domain Ω0 and a large number 3N of thin rods with thickness of order . The thin rods are divided into two levels depending on their length. In addition, the thin rods from each level are ε-periodically alternated. The homogeneous Dirichlet conditions and inhomogeneous Neumann conditions are given on the sides of the thin rods from the first level and the second level, respectively. Using the method of matched asymptotic expansions and special junction-layer solutions, we construct an asymptotic approximation for the solution and prove the corresponding estimates in the Sobolev space H 1ε) as ε → 0 (N → +∞). Published in Neliniini Kolyvannya, Vol. 9, No. 3, pp. 336–355, July–September, 2006.  相似文献   

9.
We consider the stationary flow of a generalized Newtonian fluid which is modelled by an anisotropic dissipative potential f. More precisely, we are looking for a solution of the following system of nonlinear partial differential equations
((*))
Here denotes the pressure, g is a system of volume forces, and the tensor T is the gradient of the potential f. Our main hypothesis imposed on f is the existence of exponents 1 < p  q0 <  such that
holds with constants ,  > 0. Under natural assumptions on p and q0 we prove the existence of a weak solution u to the problem (*), moreover we prove interior C1,-regularity of u in the two-dimensional case. If n = 3, then interior partial regularity is established.  相似文献   

10.
We consider the nonlinear elliptic system
where and is the unit ball. We show that, for every and , the above problem admits a radially symmetric solution (u β , v β ) such that u β v β changes sign precisely k times in the radial variable. Furthermore, as , after passing to a subsequence, u β w + and v β w uniformly in , where w = w +w has precisely k nodal domains and is a radially symmetric solution of the scalar equation Δww + w 3 = 0 in , w = 0 on . Within a Hartree–Fock approximation, the result provides a theoretical indication of phase separation into many nodal domains for Bose–Einstein double condensates with strong repulsion.  相似文献   

11.
12.
For , we consider a family of damped wave equations , where − Λ denotes the Laplacian with zero Dirichlet boundary condition in L 2(Ω). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space semigroups which have global attractors A η, . We show that the family , behaves upper and lower semicontinuously as the parameter η tends to 0+.  相似文献   

13.
We state a particular case of one of the theorems which we shall prove. Let Ω be a bounded open set in n with smooth boundary and let σ=(σ ij )be a symmetric second-order tensor with components σ ij εH k(Ω) for some (positive or negative) integer k; H k are Sobolev spaces on Ω. Then we have for some u i εH k +1(Ω),i=1,...,n, if and only if (if k<0, the integral is in fact a duality) for any symmetric tensor (ω with components and such that ). Some applications in the theory of elasticity are also given.  相似文献   

14.
Let be the exterior of the closed unit ball. Consider the self-similar Euler system
Setting α = β = 1/2 gives the limiting case of Leray’s self-similar Navier–Stokes equations. Assuming smoothness and smallness of the boundary data on ∂Ω, we prove that this system has a unique solution , vanishing at infinity, precisely
The self-similarity transformation is v(x, t) = u(y)/(t* − t)α, y = x/(t* − t)β, where v(x, t) is a solution to the Euler equations. The existence of smooth function u(y) implies that the solution v(x, t) blows up at (x*, t*), x* = 0, t* < + ∞. This isolated singularity has bounded energy with unbounded L 2 − norm of curl v.  相似文献   

15.
This paper is taken up for the following difference equation problem(P,)(L,y)_k≡εy(k 1) a(k,ε)y(k) b(k,ε)y(k-1)=f(k,ε)(1≤k≤N-1),B_1y≡-y(0) c_1y(1)=a,B_2y≡-c_2y(N-1) y(N)=βwhereεis a small parameter,c_1,c_2,a,βconstants and a(k,ε),b(k,ε),f(k,ε)(1≤k≤N)functions of k andε.Firstly,the case with constant coefficients isconsidered.Secondly,a general method based on extended transformation is given tohandle(P.)where the coefficients may be variable and uniform asymptotic expansionsare obtained Finally,a numerical example is provided to illustrate the proposed method.  相似文献   

16.
A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as where ε is the Hencky strain, is a constant elongational rate for the base elongational flow, Λ the strain amplitude (Λ ≥ 0), and Ω the strain frequency. A narrow molecular mass distribution linear polystyrene with a molecular weight of 145 kg/mol was subjected to the oscillative flow. The onset of the steady periodic regime is reached at the same Hencky strain as the onset of the steady elongational viscosity ( Λ = 0). The integral molecular stress function formulation within the ‘interchain pressure’ concept agrees qualitatively with the experiments.  相似文献   

17.
A modified miniaturized version of the Direct Impact Compression Test (DICT) technique is described in this paper. The method permits determination of the rate-sensitive plastic properties of materials up to strain rate ∼105 s−1. Miniaturization of the experimental setup with specimen dimensions: diameter d S = 2.0 mm and thickness l S = 1.0 mm, Hopkinson bar diameter 5.2 mm, with application of a novel optical arrangement in measurement of specimen strain, makes possible compression tests at strain rates from ∼103 s−1 to ∼105 s−1. In order to estimate the rate sensitivity of a low-alloy construction steel, quasi-static, Split Hopkinson Pressure Bar (SHPB) and DICT tests have been performed at room temperature within the rate spectrum ranging from 5*10−4 s−1 to 5*104 s−1. Adiabatic heating and friction effects are analyzed and the final true stress versus true strain curves at different strain rates are corrected to a constant temperature and zero friction. The results have been analyzed in the form of true stress versus the logarithm of strain rate and they show two regions of a constant rate sensitivity : relatively low up to the strain rate threshold ∼50 s−1, and relatively high above the threshold, up to strain rate ∼4.5*104 s−1.  相似文献   

18.
IntroductionInthispaper,weshallconsiderthefollowingsingularboundaryvalueproblems (BVP)u″ g(t)f(u) =0 ,   0 <t<1 ,αu(0 ) -βu′(0 ) =0 ,  γu(1 ) δu′(1 ) =0 ,(1 )whereα ,β,γ ,δ≥ 0 ,ρ:=βγ αγ αδ>0 ,f∈C([0 ,∞ ) ,[0 ,∞ ) ) ,gmaybesingularatt=0and/ort=1 .Thisproblemarisesnaturallyinthestudyofradiallysymmet…  相似文献   

19.
We are concerned with the existence of a weak solution to the degenerate quasi-linear Dirichlet boundary value problem
It is assumed that 1  <  p  <  ∞, p  ≠  2, Ω is a bounded domain in is a given function, and λ stands for the (real) spectral parameter near the first (smallest) eigenvalue λ1 of the positive p-Laplacian  − Δ p , where . Eigenvalue λ1 being simple, let φ1 denote the eigenfunction associated with it. We show the existence of a solution for problem (P) when f “nearly” satisfies the orthogonality condition ∫Ω f φ1  dx  =  0 and λ  ≤  λ1  +  δ (with δ >  0 small enough). Moreover, we obtain at least three distinct solutions if either p < 2 and λ1  −  δ ≤  λ  <  λ1, or else p > 2 and λ1  <  λ  ≤  λ1  +  δ. The proofs use a minimax principle for the corresponding energy functional performed in the orthogonal decomposition induced by the inner product in L 2(Ω). First, the global minimum is taken over , and then either a local minimum or a local maximum over lin {φ1}. If the latter is a local minimum, the local minimizer in thus obtained provides a solution to problem (P). On the other hand, if it is a local maximum, one gets only a pair of sub- and supersolutions to problem (P), which is then used to obtain a solution by a topological degree argument.  相似文献   

20.
We study the dynamics of vortices in solutions of the Gross–Pitaevsky equation in a bounded, simply connected domain with natural boundary conditions on ∂Ω. Previous rigorous results have shown that for sequences of solutions with suitable well-prepared initial data, one can determine limiting vortex trajectories, and moreover that these trajectories satisfy the classical ODE for point vortices in an ideal incompressible fluid. We prove that the same motion law holds for a small, but fixed , and we give estimates of the rate of convergence and the time interval for which the result remains valid. The refined Jacobian estimates mentioned in the title relate the Jacobian J(u) of an arbitrary function to its Ginzburg–Landau energy. In the analysis of the Gross–Pitaevsky equation, they allow us to use the Jacobian to locate vortices with great precision, and they also provide a sort of dynamic stability of the set of multi-vortex configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号