首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many applications of molecule based magnets, whether they are in information storage, displays, or as components in electronic or spintronic devices, will require putting the active materials on a surface or interfacing them with other components. Although there are many examples of molecule-based magnets, the families of tetracyanoethylene (TCNE) based magnets and Prussian-blue analogs possess materials properties that are close to those required for practical applications, and are the most advanced with respect to studies as thin films. This critical review focuses on fabrication and characterization of thin films of TCNE and Prussian-blue analog coordination polymer magnets. Emphasis is on current developments in thin film heterostructures and potential spintronics applications (135 references).  相似文献   

2.
The M-[TCNE] (M = 3d metal; TCNE = tetracyanoethylene) system is one of the most interesting classes of molecule-based magnets, exhibiting a plethora of compositions and structures (inorganic polymer chains, 2D layers, 3D networks, and amorphous solids) with a wide range of magnetic ordering temperatures (up to 400 K). A systematic study of vibrational (both infrared and, for the first time, Raman) properties of the family of new TCNE-based magnets of M(II)(TCNE) (NCMe)(2)[SbF(6)] [M = Mn, Fe, Ni] composition is discussed in conjunction with their magnetic behavior and newly reso-lved crystal structures. The vibrational properties of the isolated TCNE(●-) anion in the paramagnetic Bu(4)N [TCNE(●-)] salt and recently characterized 2D layered magnet Fe(II)(TCNE)(NCMe)(2)[FeCl(4)] are also reported for comparison. Additionally, a linear correlation between ν(C=C) (a(g)) frequency of the TCNE ligand and its formal charge Z (the spin density on the π* orbital), Z = [1571 - ν(C=C) (a(g))]/154.5 [e], is presented. It is shown that monitoring Z by Raman spectroscopy is of great use in providing information that allows understanding the peculiarity of the superexchange interaction in M-[TCNE] magnets and establishing the structure-magnetic properties correlations in this class of magnetic material.  相似文献   

3.
The development of molecules and assemblies of molecules exhibiting technologically important bulk properties, such as magnetic ordering, is an important worldwide research focus. Organic- and molecule-based magnets have been discovered and several families have been reported with magnetic ordering temperatures exceeding room temperature and as high as approximately 125 degrees C. Examples of both hard and soft magnets have been reported with coercivities as high at 27 000 Oe (and exceeding commercially available magnets) have been reported. Several examples are based on the radical anion of tetracyanoethylene, S = 1/2 [TCNE].-. The include ionic zero-dimensional (0-D) [FeCp*2]*+[TCNE]*- (Cp* = pentamethylcyclopentadienide), 1-D [MnTPP]+[TCNE]*- [TPP = meso-tetraphenylporphinato] coordination polymers, and 3-D extended network structured M[TCNE](x).ySolvent (M = V, Mn, Fe, Co, Ni, Dy). This Perspective focuses on work in our laboratory that will be discussed at the Dalton Discussion 9 meeting entitled "Functional Molecular Assemblies." In addition to the overview of TCNE-based organic magnets, the targeted design, preparation, and chemical as well as magnetic characterization of a new family of magnets based on S = 3/2 mixed-valent [Ru(II/III)2(O2CR)4]+ (R = Me, Bu(t)) is described. In particular [Ru2(O2CMe)4]3[Cr(CN)6] prepared from aqueous media possess two interpenetrating cubic lattices and magnetically orders at 33 K. In contrast, [Ru2(O2CBu(t))4]3[Cr(CN)6] forms a 2-D layered lattice and orders at 37.5 K. Both exhibit hysteretic behavior, however, this is quite anomalous for the former cubic lattice. This as well as other anomalous magnetic behaviors is attributed to the presence of the second interpenetrating lattice.  相似文献   

4.
The structures and magnetic properties of two products that result from the reactions of [Mn(TPA)(CH3CN)2](ClO4)2, TPA=tris(2-pyridylmethyl)amine and potassium tetracyanoethylenide, KTCNE, are reported. [Mn(TPA)(TCNE)]2[mu2-(TCNE)2] (1) and [Mn(TPA)(micro4-C4(CN)8)0.5].ClO4 (2) are obtained by using two different ratios of the initial reactants. Each was intended to possess two or more cis-TCNE radical anions (TCNE*/-) as ligands. 1 is a dinuclear species that crystallizes in the triclinic system in the space group P, with a=10.4432(17), b=12.2726(16), and c=13.708(2) A; alpha=88.505(12), beta=75.560(14), and gamma=87.077(12) degrees; V=1698.9(4) A3; and Z=1 and features two metal centers each with three nearly orthogonal TCNE*/- ligands. However, the three TCNE*/- ligands are all dimerized via the formation of four-center, two-electron bonds: two bridge the two Mn(II) centers, and a third TCNE*/- ligand forms an intermolecular bond to another equivalent TCNE*/-. 2 crystallizes in the tetragonal system in the space group P42212, with a=17.170(3), b=17.170(3), and c=17.1837(6) A; V=5065.9(13) A3; and Z=8. It consists of a ribbon-like coordination polymer containing the previously observed but still relatively rare octacyanobutyl dianion. The [C4(CN)8]2- anion is derived from the dimerization of two TCNE radical anions via the formation of a new sigma bond, and each anion bridges four Mn(II) centers. Both 1 and 2 display magnetic behavior consistent with only weak antiferromagnetic coupling between the high-spin d5 Mn(II) in which the TCNE*/- are rendered diamagnetic through dimerization.  相似文献   

5.
The reaction of (NBu4)(TCNE) (TCNE = tetracyanoethylene) and [Ni(NCMe)6][BF4]2 in CH2Cl2 forms layered [Ni(TCNE)(MeCN)2-delta][BF4], a magnet ( Tc = 40 K) with a ferromagnetic interaction within Ni-mu 4-[TCNE](*-) layers, and a new general route to the preparation of [M(TCNE)(NCMe)2][anion] magnets has been identified.  相似文献   

6.
[Fe(TCNE)(NCMe)2][FeCl4] is isolated from the reaction of TCNE and FeCl2(NCMe)2 and orders as a ferrimagnet below 90 K and is the initial member of a new class of magnets. It is the first metal-TCNE magnet with direct bonding between metal ion and [TCNE]*- whose structure has been determined, and it possesses a novel planar mu4-[TCNE]*- spin coupling unit bonded to four FeII's, with an axial pair of MeCNs. The [FeIIICl4]- anion occupies sites between the [FeII(TCNE*-)(NCMe)2]+ layers. [Fe(TCNE)(NCMe)2][FeCl4] has a coercive field of 1730 Oe and a remnant magnetization of 7500 emuK/mol at 50 K.  相似文献   

7.
Magnets composed of molecular components that provide both electron spins and spin-coupling pathways can stabilize bulk magnetic ordering. This was first reported for the ionic, zero-dimensional (0-D) electron transfer salt [Fe(C(5)Me(5))(2)](+)[TCNE]˙(-) (TCNE = tetracyanoethylene), which orders as a ferromagnet at T(c) = 4.8 K. Later V[TCNE](x) (x ~ 2) was characterized to order above room temperature at 400 K (127 °C). Subsequently, numerous examples of organic- and molecule-based magnets have been characterized. In this critical review, after a discussion of the important aspects of magnetism pertaining to molecule-based magnets, including the determination of the magnetic ordering temperature (T(c)) these magnetically ordered materials are reviewed from a perspective of the structural dimensionality (208 references).  相似文献   

8.
Cu(PPh3)3(TCNE) (TCNE = tetracyanoethylene) and 14 other examples form [TCNE]22- dimers possessing a long 2.89 +/- 0.05 A two-electron four-center (2e-/4c) C-C bond in the solid state. This bond arises from the overlap of the b2g pi* singly occupied molecular orbital (SOMO) on each [TCNE]*- fragment, forming a filled bonding orbital of b2u symmetry, and the stabilizing effect of the cation...anion interactions in the crystal that exceed the anionic repulsion. In contrast, Mn(C5H5)(CO)2(TCNE) exhibits a related, but different, [TCNE]*-...TCNE]*- motif in the solid state that lacks the 2e-/4c C-C bonding. To better understand the unusual nature of 2e-/4c C-C bonding, the genesis of the differences between their respective pi-[TCNE]*-...TCNE]*- interactions was sought. The lack of 2e-/4c C-C bond formation is attributed to the weaker radical character of the [TCNE]*- ligand, which has a total spin population of only 0.5 electron, half of that required for two S = 1/2 [TCNE]*- moieties to form a [TCNE]22- dimer. Hence, the antiferromagnetic MnII-[TCNE]*- intramolecular interaction (between the formally S = 1/2 Mn-bound [TCNE]*- and the paramagnetic Mn(II)) dominates over the intermolecular pi-[TCNE]*--[TCNE]*- spin coupling (between two S = 1/2 [TCNE]*- needed to form [TCNE]22-). Therefore, by selecting specific metal ions that can interact with sigma-[TCNE]*-, dimerization forming [TCNE]22- can be favored or disfavored.  相似文献   

9.
《Polyhedron》2007,26(9-11):2037-2041
The emergence of the soft ferrimagnet V[TCNE]2 has sparked interest in the development of new radical anionic bridged magnets that are ordered above room temperature. Reversible one-electron acceptors 2-(phenyl)-1,1,2-tricyanoethylene, H5PTCE, and 2-(pentafluorophenyl)-1,1,2-tricyanoethylene, F5PTCE, are replacements for TCNE, giving magnets in reactions with V(CO)6 that order at 215 K and 307 K, respectively. Both compounds exhibit hysteresis with small coercivities at 5 K which is typical of this class of compounds.  相似文献   

10.
(meso-Tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphinato)manganese(III) tetracyanoethenide, [MnTP'P][TCNE], has been structurally and magnetically characterized. [MnTP'P][TCNE] (C(96)H(108)MnN(8)O(4)) belongs to the triclinicP&onemacr; (No. 2) space group with a = 8.597(2) ?, b = 14.756(4) ?, c = 17.573(5) ?, alpha = 101.16 (2) degrees, beta = 100.56(2) degrees, gamma = 96.37(2) degrees, and Z = 1. Due to the oxidative instability of the phenoxy groups, [Mn(III)TP'P][TCNE] was prepared from the reaction of [Mn(III)TP'P]OAc with the strong acid H(2)TCNE (pK(a) = 3.6) in the presence of TCNE to form acetic acid and the product. [MnTP'P][TCNE] is a coordination polymer with the Mn(III) sites bridged by trans-&mgr;(2)-bound [TCNE](*)(-) with relatively short (8.587 ?) intrachain and long (>/=14.756 ?) interchain Mn.Mn separations. The magnetic data above 210 K obey the Curie-Weiss expression with an effective Θ value of 90.0 K, the largest yet reported for a soluble molecule-based magnet. In addition to a 15 K T(c) hysteretic behavior with a coercive field of 100 Oe is observed at 5 K. Despite the significant steric bulk leading to the substantially decreased interchain interactions that are crucial for magnetic ordering, the T(c) is unexpectedly high and suggests that other linear chain systems may be expected to exhibit magnetic ordering at higher temperatures.  相似文献   

11.
Potassium-mirror reduction of tetracyanoethylene (TCNE) acceptor in tetrahydrofuran affords K(THF)2 TCNE salt (1) showing double TCNE/K chains assembled via unusual μ3-TCNE-bridging of potassium cations. These parallel ladder-type chains are further tethered by pairs of THF bridges between potassium centers and by intermolecular π-bonding in (TCNE)22? dimers, and this results in formation of quasi-2-D coordination networks. In the presence of crown-ether ligand, the same potassium-mirror reduction lead to formation of [K(18-crown-6)(THF)2]TCNE salt (2) in which monomeric tetracyanoethylene anion-radicals are positioned between bulky [K+(18-crown-6)(THF)2] counter-ions. In comparison, crystallization of tetracyanoethylene anion-radicals with K+(18-crown-6) counter-ions in dichloromethane affords K(18-crown-6)TCNE salt (3) consisting of 1-D chains with 1,2-(N,N’)-TCNE bindings of potassium cations (nested in the crown-ether cavities). Temperature-dependent magnetic susceptibility study revealed essentially isolated tetracyanoethylene anion-radicals (S = 1/2) in this 1-D coordination polymer.  相似文献   

12.
Synthons Tl1[TCNE]*- (1) and Tl12[TCNE]2- (2), for [TCNE]*- and [TCNE]2-, respectively, in metathesis reactions have been quantitatively prepared and characterized. The structure of 1 was solved and refined in a monoclinic unit cell at 27 degrees C [C2/c, a = 12.6966 (12) angstroms, b=7.7599 (7) angstroms, c=15.5041 (15) angstroms, beta = 96.610 (5) degrees , V= 1517.4 (2) angstroms3, Dcalcd = 2.911 gcm-3, Z=8, R1 = 0.0575, omegaR2=0.0701] and exhibits nuCN absorptions at 2,191 (s) and 2,162 (s) cm-1 consistent with metal-bound [TCNE]*-. The structure of 1 consists of a distorted square antiprismatic octacoordinate Tl1 bound to six monodentate [TCNE]*-s with TlN separations ranging from 2.901 to 3.171 angstroms averaging 3.020 angstroms, and one bidentate [TCNE]*- with TlN separations averaging 3.279 angstroms. The TlN bonding is attributed to electrostatic bonding. The [TCNE]*-s form dimerized zigzag chains with intra- and interdimer separations of 2.87 and 3.29 angstroms, respectively. The tight pi-[TCNE](2)2- dimer is diamagnetic and has the shortest intradimer [TCNE]*- distance reported. These synthons for [TCNE]*- and [TCNE]2- in metathesis reactions lead to the precipitation of, for example, TlIX (X = Cl, Br, OAc). Reaction of 1 with MnIII(porphyrin)X (X = Cl, OAc) forms the molecule-based magnets of [MnIII(porphyrin)][TCNE] composition, while the reaction of [CrI(C6H6)2]Br and (Me2N)2CC(NMe2)2Cl2, [TDAE]Cl2, with 1 forms [CrI(C6H6)2] [TCNE] and [TDAE][TCNE]2, respectively. The structure of [TDAE][TCNE]2.MeCN was solved and refined in an orthorhombic unit cell at 21 degrees C [I222, a = 10.2332(15), b = 13.341(6), c = 19.907(8) angstroms, V= 2717.7 angstroms3, Z = 4; Dcalcd = 1.216 gcm-3, R=0.083, Romega = 0.104] and exhibits upsilonCN absorptions at 2,193 (m), 2,174 (s), and 2,163 (s) cm-1 consistent with isolated [TCNE](2)2- , in contrast to the aforementioned TlI bound [TCNE](2)2-. The reaction of 2 with [TDAE]Cl2 forms [TDAE]2+[TCNE]2-.  相似文献   

13.
14.
We report a systematic investigation of the temperature-dependent infrared vibrational spectra of a family of chemically related coordination polymer magnets based upon bridging bifluoride (HF(2)-) and terminal fluoride (F-) ligands in copper pyrazine complexes including Cu(HF(2))(pyz)(2)BF(4), Cu(HF(2))(pyz)(2)ClO(4), and CuF(2)(H(2)O)(2)(pyz). We compare our results with several one- and two-dimensional prototype materials including Cu(pyz)(NO(3))(2) and Cu(pyz)(2)(ClO(4))(2). Unusual low-temperature hydrogen bonding, local structural transitions associated with stronger low-temperature hydrogen bonding, and striking multiphonon effects that derive from coupling of an infrared-active fundamental with strong Raman-active modes of the pyrazine building-block molecule are observed. On the basis of the spectroscopic evidence, these interactions are ubiquitous to this family of coordination polymers and may work to stabilize long-range magnetic ordering at low temperature. Similar interactions are likely to be present in other molecule-based magnets.  相似文献   

15.
When poly(vinylidene fluoride) (PVDF) was ground with tetracyanoethylene (TCNE) powder in a vibration glass ball mill in vacuum in the dark at 77 K, the TCNE anion radical (TCNE-) was detected in the mixture by ESR spectroscopy. The TCNE.- is formed by the abstraction of electrons by TCNE from the anion that is produced by a heterogeneous bond scission of carbon-carbon bonds in the polymer main chain. The assignment of TCNE.- was carried out by the ESR spectral simulation on the basis of an anisotropic effective hyperfine tensor that includes a forbidden transition term. At least 85% of the bond scission of the PVDF main chain is induced by a heterogeneous process to produce ionic products. The yield of these mechanions seems to increase with the polarity of carbon-carbon bond owing to a substituent group bonded to the carbon in the polymer main chain.  相似文献   

16.
Methyl tricyanoethylenecarboxylate, MTCE, has been used as a one-electron acceptor building block for the synthesis of isomorphous decamethylmetallocene charge-transfer salt magnets of the formula [MCp*2][MTCE], M = Cr, Mn, and Fe. Functionally and electrochemically, MTCE is a hybrid between tetracyanoethylene (TCNE) and dimethyl dicyanofumarate (DMeDCF), two acceptors that have previously been found to support ferromagnetism. The X-ray crystal structure of the chromium analogue, [CrCp*2][MTCE], shows it to exist in the expected mixed stack structure in the orthorhombic space group Pnma with a = 14.739(3) A, b = 10.7869(19) A, and c = 15.771(3) A and Z = 4. As anticipated, all three family members exhibit dominant ferromagnetic coupling, which is presumed to reflect intrastack interactions. However, the bulk magnetic properties mostly differ from simple interpolations or extrapolations of the properties of their TCNE and DMeDCF analogues. Density functional theory calculations have been used to shed some light on this observation.  相似文献   

17.
The (TCNE)(2)(2)(-) dimer dianion formed by connecting two TCNE(-) anions via a four-center, two-electron pi-orbital bond is studied using ab initio theoretical methods and a model designed to simulate the stabilization due to surrounding counterions. (TCNE)(2)(2)(-) is examined as an isolated species and in a solvation environment representative of tetrahydrofuran (THF) solvent. The intrinsic strength of this novel bond and the influences of internal Coulomb repulsions, of solvent stabilization and screening, and of counterion stabilization are all considered. The geometry, electronic and thermodynamic stabilities, electronic absorption spectra, and electron detachment energies of this novel dianion are examined to help understand recent experimental findings. Our findings lead us to conclude that the (TCNE)(2)(2)(-) dianion's observation in solid materials is likely a result of its stabilization by surrounding countercations. Moreover, our results suggest the dianion is geometrically metastable in THF solution, with a barrier to dissociation into two TCNE(-) anions that can be quickly surmounted at room temperature but not at 77 K. This finding is consistent with what is observed in laboratory studies of low- and room-temperature solutions of salts containing this dianion. Finally, we assign two peaks observed (at 77 K in methyl-THF glass) in the UV-vis region to (1) electronic transitions involving the four-center orbitals and (2) detachment of an electron from the four-center pi-bonding orbital to generate (TCNE)(2)(-) + e(-).  相似文献   

18.
The reaction of Fe(II)(C5Me5)(C5H5), FeCpCp, with percyano acceptors, A [A = C4(CN)6 (hexacyanobutadiene), TCNQF4 (perfluoro-7,7,8,8-tetracyano-p-quinodimethane), and DDQ (2,3-dichloro-5,6-dicyanobenzoquinone)], results in formation of 1:1 charge-transfer salts of [Fe(III)CpCp]*]*+[A]*- composition. With A = TCNQ (7,7,8,8-tetracyano-p-quinodimethane) a 1:2 electron-transfer salt with FeCpCp forms. With A = TCNE (tetracyanoethylene) a pair of 1:1 salts as well as a pair of 2:3 salts of [FeCpCp]2[TCNE]3.S (S = CH2Cl2, THF) have been isolated and characterized by single-crystal X-ray diffraction. [FeCpCp][TCNE] consists of parallel 1-D.D(*+)A(*-)D(*+)A(*-)D(*+)A(*-). chains, while [FeCpCp][TCNE].MeCN has a herringbone array of D(*+)A2(2-)D(*+) dimers separated by solvent molecules. Although each [TCNE](-) is disordered, the diamagnetic [TCNE]2(2-) dimer is structurally different from those observed earlier with an intradimer separation of 2.79 A. The [TCNE](-) in the 2:3 [FeCpCp]2[TCNE]3.S exists as an eclipsed diamagnetic [TCNE]2(2-) dimer with an intradimer ethylene C.C separation of 2.833 and 2.903 A for the CH2Cl2- and THF-containing materials, respectively. The bond distances and angles for all the cations are essentially equivalent, and the distances are essentially equivalent to those previously reported for [FeCp2](*+) and [FeCp2](*+) cations. The average Fe-C5H5-ring and Fe-C5Me5-ring centroid distances are 1.71 and 1.69 A, respectively, which are 0.05 A longer than reported for Fe(II)CpCp. The one-electron reduction potential for Fe(II)CpCp is 0.11 V (vs SCE). The 5 K EPR of [FeCpCp](*+)[BF4](-) exhibits an axially symmetric powder pattern with g(parallel) = 4.36 and g(perpendicular) = 1.24, and the EPR parameters are essentially identical to those reported for ferrocenium and decamethylferrocenium. The high-temperature magnetic susceptibility for polycrystalline samples of these complexes can be fit by the Curie-Weiss law, chi = C/(T - theta), with low theta values and mu(eff) values from 2.08 to 3.43 mu(B), suggesting that the polycrystalline samples measured had varying degrees of orientation. [FeCpCp][TCNE] exhibits the highest effective moment of 3.43 mu(B)/Fe and weak ferromagnetic coupling, as evidenced from the theta of 3.3 K; however, unexpectedly, it does not magnetically order above 2 K. The formation of the four phases comprising FeCpCp and TCNE emphasizes the diversity of materials that may form and the present inability to predict neither solid-state compositions nor structure types.  相似文献   

19.
We study numerically the crystal and electronic structure of the room temperature organometallic ferromagnet of general composition V(TCNE)(x) x y solvent with x approximately 2, starting from both the experimental structure of its iron analog which results from the EXAFS experiment as well as the theoretical model structure compatible with magnetic measurements on this type of compounds. The results of the numerical study performed at the density functional level of theory show that the experimentally determined structure complies with the magnetic measurements and thus can serve as a prototype structure for the entire family of the M(TCNE)(2) organometallic magnets. Both the results of the numerical study and the magnetic experiments are interpreted using a proposed model Hamiltonian.  相似文献   

20.
Ring-opening polymerizations of cyclobutane adducts of tetracyanoethylene (TCNE) and vinyl ethers (VE) or p-methoxystyrene with tertiary amines are described. The polymerization of the cyclobutane adduct 1a of TCNE and ethyl vinyl ether (EVE) was carried out with 10 mol % of triethylamine in acetonitrile at ambient temperature to afford the alternating copolymer of TCNE and EVE with high molecular weight in good yield under various conditions. Under the optimum condition, the cyclobutane adducts of TCNE and a variety of VEs such as n-butyl vinyl ether, isobutyl vinyl ether, 2,3-dihydrofuran, and 3,4-dihydro-2H-pyran were polymerized to yield similar polymers. Although the cyclobutane adduct 4 of TCNE and p-methoxystyrene did not polymerize under these conditions, the treatment of 4 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in acetonitrile at 60°C gave the polymer. On the basis of the fact that the polymer molecular weight increased rapidly at the initial stage and slowly even after the consumption of all of monomers, we propose that the tertiary amine initiates the chain anionic polymerization of the cyclobutane adduct to afford an ammonium macrozwitterion 3 , which is subjected to the intermolecular nucleophilic substitution with each other in a step polymerization manner. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号