共查询到20条相似文献,搜索用时 15 毫秒
1.
Tracking single lipase molecules on a trimyristin substrate surface using quantum dots 总被引:2,自引:0,他引:2
Sonesson AW Elofsson UM Callisen TH Brismar H 《Langmuir : the ACS journal of surfaces and colloids》2007,23(16):8352-8356
The mobility of single lipase molecules has been analyzed using single molecule tracking on a trimyristin substrate surface. This was achieved by conjugating lipases to quantum dots and imaging on spin-coated trimyristin surfaces by means of confocal laser scanning microscopy. Image series of single lipase molecules were collected, and the diffusion coefficient was quantified by analyzing the mean square displacement of the calculated trajectories. During no-flow conditions, the lipase diffusion coefficient was (8.0+/-5.0)x10(-10) cm2/s. The trajectories had a "bead on a string" appearance, with the lipase molecule restricted in certain regions of the surface and then migrating to another region where the restricted diffusion continued. This gave rise to clusters in the trajectories. When a flow was applied to the system, the total distance and average step length between the clusters increased, but the restricted diffusion in the cluster regions was unaffected. This can be explained by the lipase operating in two different modes on the surface. In the cluster regions, the lipase is likely oriented with the active site toward the surface and hydrolyzes the substrate. Between these regions, a diffusion process is proposed where the lipase is in contact with the surface but affected by the external flow. 相似文献
2.
Otzen D 《Colloids and surfaces. B, Biointerfaces》2008,64(2):223-228
Lipases are activated at interfaces between aqueous and hydrophobic phases, where they typically undergo conformational changes leading to significant activity increase. Here I use a quartz crystal microbalance with dissipation (QCM-D) to study changes in layer thickness and viscosity during the adsorption of variants of the Thermomyces lanuginosus lipase (TlL) onto a methyl-terminated hydrophobic surface. Unlike wildtype TlL, the variant Mut1, which shows improved performance under certain test conditions, shows a large dissipation increase during the binding process, leading to a significantly thicker layer. This altered adsorption behaviour may be linked to Mut1's changes in secondary structure. This is corroborated by the fact that four other TlL mutants with unaltered secondary structure showed wildtype-like absorption behaviour. Unlike wildtype TlL and the other variants, Mut1 contains several consecutive basic residues introduced into the C-terminal region which is close in space to the N-terminal part of the protein, which also contains several basic residues. Electrostatic repulsion between these two regions leading to local structural flexibility may facilitate altered adsorption behaviour and ultimately to improved enzymatic performance on a solid surface. QCM-D thus provides a good approach to screen protein variants for their adsorption properties on hydrophobic surfaces. 相似文献
3.
Verônica Ferreira Patricia C. Nolasco Aline M. Castro Juliana N. C. Silva Alexandre S. Santos Mônica C. T. Damaso Nei Pereira Jr. 《Applied biochemistry and biotechnology》2006,129(1-3):226-233
This work aims to evaluate cell recycle of a recombinant strain of Pichia pastoris GS115 on the Xylanase A (XynA) production of Thermomyces lanuginosus IOC-4145 in submerged fermentation. Fed-batch processes were carried out with methanol feeding at each 12h and recycling
cell at 24, 48, and 72 h. Additionally, the influence of the initial cell concentration was investigated. XynA production
was not decreased with the recycling time, during four cell recycles, using an initial cell concentration of 2.5 g/L. The
maximum activity was 14,050 U/L obtained in 24h of expression. However, when the initial cell concentration of 0.25 g/L was
investigated, the enzymatic activity was reduced by 30 and 75% after the third and fourth cycles, respectively. Finally, it
could be concluded that the initial cell concentration influenced the process performance and the interval of cell recycle
affected enzymatic production. 相似文献
4.
Sonesson AW Callisen TH Brismar H Elofsson UM 《Colloids and surfaces. B, Biointerfaces》2008,64(2):208-215
The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m2) compared to the hydrophilic surface (1.40–1.50 mg/m2). The thickness of the adsorbed layer was constant (3.5 nm) on both surfaces at an adsorbed amount >1.0 mg/m2, but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate. 相似文献
5.
Damaso Mônica C. T. Andrade Carolina M. M. C. Pereira Nei 《Applied biochemistry and biotechnology》2000,84(1-9):821-834
The production of cellulase-free end oxylanase by the thermophilic fungus Thermomyces lanuginosus was investigated insemisolid fermentation and liquid fermentation. Different process variables were investigated in semisolid
fermentation, employing corncobas the carbon source. The best results were with the following conditions: grain size=4.5 mm,
solid:liquid ratio=1:2, and inoculum size=20% (v/v). Corncob, xylan, and xylose were the best inducers for endoxylanase production.
Additionally, organic nitrogen sources were necessary for the production of high endoxylanase activities. The crude enzyme
had optimum activity at pH 6.0 and 75°C, displaying a high thermostability. The apparent K
25 and V
max were 1.77 mg of xylan/mL and 21.5 U/mg of protein, respectively. 相似文献
6.
Nayeli Ávila-Cisneros Susana Velasco-Lozano Sergio Huerta-Ochoa Jesús Córdova-López Miquel Gimeno Ernesto Favela-Torres 《Applied biochemistry and biotechnology》2014,174(5):1859-1872
A naturally immobilized biocatalyst with lipase activity was produced by Thermomyces lanuginosus on solid-state fermentation with perlite as inert support. Maxima lipase activities (22 and 120 U/g of dry matter, using p-nitrophenyl octanoate and trioctanoine, respectively, as substrates) were obtained after 72 h of solid culture, remaining nearly constant up to 120 h. Maxima lipase activity was found at 60 to 85 °C and pH 10. The biocatalyst was stable at 60 °C for at least 4 h of incubation and a pH from 7 to 10. Energy values of activation and deactivation of lipase were of 26 and 6.7 kJ/mol, respectively. The biocatalyst shows high selectivity for the release of the omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), during the hydrolysis of sardine oil. The EPA/DHA ratio (16:6) released by this biocatalyst was superior to that obtained with the commercial preparations of T. lanuginosus. 相似文献
7.
Carla Roberta Matte Roberta Bussamara Jairton Dupont Rafael C. Rodrigues Plinho Francisco Hertz Marco Antônio Záchia Ayub 《Applied biochemistry and biotechnology》2014,172(5):2507-2520
Thermomyces lanuginosus lipase (TLL) was immobilized on native and modified Immobead 150, with epoxy groups removed by hydrolysis and oxidized to add aldehyde on its surface. Immobilizations on both supports were performed by adsorption, adsorption and cross-linking, covalent attachment, multipoint covalent attachment, and, for the modified support, multipoint covalent attachment using ethylenediamine. Biocatalysts were evaluated for thermal and solvent stabilities, and the best biocatalyst was also tested after incubation in ionic liquids and used in the synthesis of butyl butyrate and isoamyl butyrate. Multipoint covalent immobilized TLL on the native Immobead 150 (Emulti) showed a half-life of 5.32 h at 70 °C, being approximately 30 times more stable than its soluble form; it showed high stability in acetone, hexane, and isooctane. Its enzymatic activity was up to 40 % when incubated in ionic liquids. Ester synthesis produced yields of esterification above 60 % in 24 h. Of all immobilization protocols, the Emulti performed best concerning the thermal, solvent, and ionic liquids stabilities. Emulti was successfully applied to the synthesis of butyl butyrate and isoamyl butyrate, which are very important products for the food and beverage industries. 相似文献
8.
Shi Zelu Gong Weili Zhang Lili Dai Lin Chen Guanjun Wang Lushan 《Applied biochemistry and biotechnology》2019,187(4):1515-1538
Applied Biochemistry and Biotechnology - Thermophiles have several beneficial properties for the conversion of biomass at high temperatures. Thermomyces lanuginosus is a thermophilic filamentous... 相似文献
9.
Carlos Eduardo Barão Leandro Daniel de Paris João Henrique Dantas Matheus Mendonça Pereira Lucio Cardozo Filho Heizir Ferreira de Castro Gisella Maria Zanin Flavio Faria de Moraes Cleide Mara Faria Soares 《Applied biochemistry and biotechnology》2014,172(1):263-274
The use of lipases in industrial processes can result in products with high levels of purity and at the same time reduce pollutant generation and improve both selectivity and yields. In this work, lipase from Thermomyces lanuginosus was immobilized using two different techniques. The first involves the hydrolysis/polycondensation of a silica precursor (tetramethoxysilane (TMOS)) at neutral pH and ambient temperature, and the second one uses tetraethoxysilane (TEOS) as the silica precursor, involving the hydrolysis and polycondensation of the alkoxide in appropriate solvents. After immobilization, the enzymatic preparations were dried using the aerogel and xerogel techniques and then characterized in terms of their hydrolytic activities using a titrimetric method with olive oil and by the formation of 2-phenylethyl acetate in a transesterification reaction. The morphological properties of the materials were characterized using scanning electron microscopy, measurements of the surface area and pore size and volume, thermogravimetric analysis, and exploratory differential calorimetry. The results of the work indicate that the use of different silica precursors (TEOS or TMOS) and different drying techniques (aerogel or xerogel) can significantly affect the properties of the resulting biocatalyst. Drying with supercritical CO2 provided higher enzymatic activities and pore sizes and was therefore preferable to drying, using the xerogel technique. Thermogravimetric analysis and differential scanning calorimetry analyses revealed differences in behavior between the two biocatalyst preparations due to the compounds present. 相似文献
10.
Sucrose laurate is a detergent that is useful for various biochemical applications because it is a green compound and is easily degradable after hydrolysis with a lipase or esterase. One problem observed in the process of sucrose laurate degradation is that most commercial detergent preparations are impure, necessitating the hydrolysis of all of the sucrose esters present in the preparation, all of them with detergent properties. In this article, a highly active catalyst, which is able to perform the hydrolysis of commercial sucrose laurate, is presented. The use of glyoxyl agarose preparations of a previously aminated Thermomyces lanuginosa lipase (TLL) enabled complete hydrolysis, in less than 30 min, of all of the compounds that comprise the mixture. In addition, this derivative is stable in the presence of 20% ethanol, which is necessary to prevent microbial contamination. 相似文献
11.
Zhu X Zhang Z Xu X Men X Yang J Zhou X Xue Q 《Journal of colloid and interface science》2012,367(1):443-449
A simple solution-immersion technique was developed for the fabrication of a superamphiphobic surface on the copper sheet. Hierarchical structure composed of nanorod arrays and microflowers was formed on the copper surface by an alkali assistant oxidation process; after fluorination, the surface became super-repellent toward water and several organic liquids possessing much lower surface tension than that of water, such as hexadecane. Such superamphiphobicity is attributed to the synergistic effect of their special surface chemicals and microscopic structures, which allows for the formation of a composite interface with all probing liquids tested. We also discuss the effects of surface chemical constituent and geometrical structure on hydrophobicity and oleophobicity; such information allows us to engineer surfaces with specific oleophobic behavior. Additionally, the stability of the composite interface on the created superamphiphobic surface is studied by the compression and immersion test. 相似文献
12.
p-nitrophenyllaurate: a substrate for the high-performance liquid chromatographic determination of lipase activity 总被引:1,自引:0,他引:1
Many assay procedures have been devised to measure lipolytic activity, but none is without problems. It is for this reason that new methods are still being proposed. In this work we have investigated the use of two esters of p-nitrophenol, the palmitic acid and lauric acid esters, as substrates for a highly sensitive high-performance liquid chromatographic method. Data on recovery, specific activity and reproducibility are reported only for the lauric ester, because the palmitic ester turned out to be a very poor substrate. 相似文献
13.
14.
Proteins imbedded in solid-supported lipid bilayers can serve as model systems for investigations of cellular membranes and protein behavior on surfaces. We have investigated the self-assembly of streptavidin on mica-supported bilayer membranes. Using fluorescence microscopy and atomic force microscopy, our studies reveal that the concentration of surface ligand influences the molecular packing of the resulting protein arrays, which in turn affects overall crystal morphology. Two-dimensional streptavidin crystals are obtained when the biotinylated lipid density on the substrate reaches 1.5% mole fraction, yielding high-aspect morphologies that comprise primarily of crystals with P1 symmetry. At 3% and above, crystals with C222 symmetry are formed and result in H-shaped and confluent structures. In intermediate densities between 2 and 3%, a coexistence of P1 and C222 crystal forms is observed. The relationship between macroscopic morphology and molecular configuration is similar to previously reported data obtained at the air/water interface. This suggests that, under our experimental conditions, protein interactions with the supporting substrate are less significant for defining self-assembly behavior than interactions between protein molecules. Ligand-inhibition and fluorescence recovery after photobleaching were used to elucidate the concentration-dependent mechanism for the divergent crystal forms. We have measured the diffusion coefficient of molecules in P1-forming conditions to be approximately twice that of molecules in C222-forming concentrations, which is consistent with proteins bound to the surface through one and two ligands, respectively. The differential flexibility associated with the binding state is therefore likely to alter the subtle protein interactions involved in crystallization. 相似文献
15.
Jiro Kumaki 《Journal of Polymer Science.Polymer Physics》1990,28(1):105-111
Monomolecular particles of polystyrene (Mw/Mn = 1.04, Mw = 3.84 ? 106) formed by spreading of a dilute solution in benzene over a water surface were successfully accumulated onto a hydrophobic substrate by the horizontal lifting method. The accumulation was quantitative (up to 66 layers) to give a multilayer film. The substrates used were silicon single crystals, quartz coated with an iron(III) stearate monolayer, and poly(methylmethacrylate) plates. The film contained voids amounting to 20-30 vol%. The surface structure observed by transmission electron microscopy clearly showed a multilayer, particle structure. These facts indicate that the molecules exist as monomolecular particles in the film. The film should be a suitable material to study properties of polymeric monomolecules in a very unusual state as compared with the ordinary solid. 相似文献
16.
17.
Ngo YH Li D Simon GP Garnier G 《Langmuir : the ACS journal of surfaces and colloids》2012,28(23):8782-8790
This work investigates the effect of gold nanoparticle (AuNP) addition to paper substrate and examines the ability of these composite materials to amplify the surface enhanced Raman scattering (SERS) signal of a dye adsorbed. Paper has a three-dimensional (3D), porous, and heterogeneous morphology. The manner in which paper adsorbs the nanoparticles is crucial to its SERS properties, particularly with regards to aggregation. In this work, we sought to maintain the same degree of aggregation, while changing the concentration of nanoparticles deposited on paper. We achieved this by dipping paper into AuNP solutions of different, known concentration and found that the initial packing density of AuNPs in solutions was retained on paper with the same degree of aggregation. The surface coverage of AuNPs on paper was found to scale linearly to their concentration profile in solutions. The SERS performances of the AuNP-treated papers were evaluated with 4-aminothiophenol (4-ATP) as the Raman molecule, and their SERS intensities increased linearly with the AuNPs' concentration. Compared to AuNP-treated silicon, the Raman enhancement factor (EF) from paper was relatively higher due to a more uniform and greater degree of adsorption of AuNPs. The effect of the spatial distribution of AuNPs in their substrates on SERS activity was also investigated. In this experiment, the number of AuNPs was kept constant (a 1 μL droplet of AuNPs was deposited on all substrates), and the distribution profile of AuNPs was controlled by the nature of the substrate: paper, silicon, and hydrophobized paper. The AuNP droplet on paper showed the most reproducible and sensitive SERS signal. This highlighted the role of the z-distribution (through film) of AuNPs within the bulk of the paper, producing a 3D multilayer structure to allow inter- and intralayer plasmon coupling, and hence amplifying the SERS signal. The SERS performance of nanoparticle-functionalized paper can thus be optimized by controlling the 3D distribution of the metallic nanoparticles, and such control is critical if these systems are to be implemented as a low-cost and highly sensitive bioassay platform. 相似文献
18.
Sonesson AW Elofsson UM Brismar H Callisen TH 《Langmuir : the ACS journal of surfaces and colloids》2006,22(13):5810-5817
With the aim of being able to manipulate the processes involved in interfacial catalysis, we have studied the effects of a mixture of nonionic/anionic surfactants, C12E6/LAS (1:2 mol %), on the adsorption and surface mobility of a lipase obtained from Thermomyces lanuginosus (TLL). Surface plasmon resonance (SPR) and ellipsometry were used to analyze the competitive adsorption process between surfactants and TLL onto hydrophobic model surfaces intended to mimic an oily substrate for the lipase. We obtained the surface diffusion coefficient of a fluorescently labeled TLL variant on silica silanized with octadecyltrichlorosilane (OTS) by fluorescence recovery after photobleaching (FRAP) on a confocal laser scanning microscope. By means of ellipsometry we calibrated the fluorescence intensity with the surface density of the lipase. The TLL diffusion was measured at different surface densities of the enzyme and at two time intervals after coadsorption with different concentrations of C12E6/LAS. The surfactant concentrations were chosen to represent concentrations below the critical micelle concentration (CMC), in the CMC region, and above the CMC. The apparent TLL surface diffusion was extrapolated to infinite surface dilution, D0. We found that the presence of surfactants strongly modulated the surface mobility of TLL: with D(0) = 0.8 x 10(-11) cm2/s without surfactants and D0 = 13.1 x 10(-11) cm2/s with surfactants above the CMC. The increase in lipase mobility on passing the CMC was also accompanied by a 2-fold increase in the mobile fraction of TLL. SPR analysis revealed that surface bound TLL was displaced by C12E6/LAS in a concentration-dependent manner, suggesting that the observed increase in surface mobility imparts bulk-mediated diffusion and so-called rebinding of TLL to the surface. Our combined results on lipase/surfactant competitive adsorption and lipase surface mobility show how surfactants may play an important role in regulating interfacial catalysis from physiological digestion to technical applications such as detergency. 相似文献
19.
《Surface and interface analysis : SIA》2018,50(2):180-187
The solvent‐provoked formation and evolution of thin film buckling‐delamination on a compliant substrate have been studied. The film surface is observed by an optical microscope showing a remarkable dynamic buckling‐delamination development and a subsequent stable branched‐straight state. It is revealed that the initiation, propagation, and the resulting patterns of film buckles are strongly dependent on the solvent type, film stress, interfacial adhesion, and film thickness. The buckling could be controlled further by a reasonable chemical solvent configuration and used to provide useful information for the pattern creation on polymer systems in diverse fields, such as micro/nanofabrication and optics. 相似文献
20.
Ikram Jemel Ahmed Fendri Youssef Gargouri Sofiane Bezzine 《Colloids and surfaces. B, Biointerfaces》2009,70(2):238-242
We demonstrated the use of X-ray photoelectron spectroscopy (XPS) to study DNA hybridization. Target DNA labeled with hexachloro-fluorescein (HEX) was hybridized to DNA arrays with four different probes. Each probe dot of the hybridized arrays was detected with XPS. The XPS Cl2p peak areas were found to decrease with an increase in mismatched bases in DNA probes. The Cl2p core-level peak area ratio of a probe perfectly matched to one, two and three base-mismatched probes accorded well with the results of conventional fluorescent imaging, which shows that XPS is a potential tool for analyzing DNA arrays. The DNA arrays’ hybridization efficiency was assessed by the molar ratio of chlorine to phosphorus in a DNA strand, which was determined from the relevant XPS Cl2p and P2p core-level peak areas after hybridization. This could provide a new method to detect DNA hybridization efficiency. 相似文献