首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
张竹青* 《物理化学学报》2012,28(10):2381-2389
蛋白质全新设计和折叠研究是从两个不同的方向来理解蛋白质序列-结构-功能关系这一结构生物学重要问题. 蛋白质全新设计取得的成功实例一定程度上检验了人们对蛋白质结构和相互作用理解的准确性, 但它们中多数所表现的不同于天然蛋白质的折叠动力学特征也表明, 要达到最终的功能化实现目标还面临着不少的挑战. 本文综述了蛋白质全新设计的发展过程及现状, 蛋白质折叠研究在实验、理论及模拟方面的研究进展, 以及全新设计蛋白质的折叠机制的研究现状. 阐述了深入了解全新设计蛋白质与天然蛋白质折叠机制的不同, 可以为进一步有效地合理化设计蛋白质提供有益的参考.  相似文献   

2.
蛋白质是生命功能的执行者,其功能的发挥受自身结构动态变化、与其他生物分子的相互作用及修饰等因素的调节。因此,对蛋白质及蛋白复合物结构的研究有助于揭示重要生命过程中的分子机理与机制。氢氘交换质谱(Hydrogen deuterium exchange mass spectrometry,HDX-MS)是研究蛋白质结构、动态变化和相互作用的强有力工具,也是传统生物物理手段的重要补充。该文综述了HDX-MS的基本原理、机制、实验方法和研究最新进展,并从蛋白质自身动态变化、蛋白质-小分子相互作用、蛋白质-蛋白质相互作用3个方面介绍了近年来HDX-MS在蛋白及蛋白复合物研究中的应用进展。  相似文献   

3.
蛋白质是一切生命体的物质基础,是生命活动的主要承担者,参与各种生理功能的调节.设计具有特定功能的蛋白质在蛋白质工程、生物医药、材料科学等领域具有重要意义.蛋白质序列设计的目标是设计能够折叠成期望结构并具有相应功能的氨基酸序列,是所有理性蛋白质工程的核心问题,具有极其重要的研究和应用潜力.随着蛋白质序列数据的指数型增长和...  相似文献   

4.
表面等离子共振(SPR)近年来迅速发展为用于分析生物分子相互作用的一项技术.该技术无需标记、特异性强、灵敏度高、样品用量小,可实现在线连续实时检测.目前SPR已被广泛应用于免疫学、蛋白质组学、药物筛选、细胞信号转导、受体/配体垂钓等领域.该文阐述了基于表面等离子体共振技术生物传感器的基本原理和技术流程,综述了SPR在蛋白质-蛋白质相互作用动力学研究、蛋白质结构及功能研究、蛋白质突变和碎片分析、信号转导中的应用以及SPR在蛋白质-蛋白质相互作用研究中的多项关键技术.指出SPR通过与光谱、电化学等多技术联用后,可以获得更加详实的信息.  相似文献   

5.
赵媛  曾金  林英武 《化学进展》2015,27(8):1102-1109
蛋白质是生命体的重要组成部分,其中生物酶在生命体系中发挥至关重要的作用。蛋白质分子设计是研究生物酶结构与功能关系的重要手段。本文综述了基于蛋白质骨架的人工水解酶的理性设计与功能研究进展,包括对天然蛋白的重新利用和重新改造,基于3-股螺旋、4-股螺旋或锌指蛋白的分子设计,以及血红蛋白(如细胞色素b5和肌红蛋白突变体)水解酶催化活性的调控等,阐明了人工水解酶分子设计的基本思路与研究方法,为合理构建人工水解酶或其他生物酶提供了重要的信息。人工水解酶的理性设计进展,不但深化我们对天然酶结构-性质-反应-功能关系的认识,而且还提升我们创造具有优越功能的人工生物酶的能力。  相似文献   

6.
Aoneng Cao 《物理化学学报》2020,36(1):1907002-0
蛋白质折叠问题被称为第二遗传密码,至今未破译;蛋白质序列的天书仍然是"句读之不知,惑之不解"。在最近工作的基础上,我们提出了蛋白质结构的"限域下最低能量结构片段"假说。这一假说指出,蛋白质中存在一些关键的长程强相互作用位点,这些位点相当于标点符号,将蛋白质序列的天书变成可读的句子(多肽片段)。这些片段的天然结构是在这些强长程相互作用位点限域下的能量最低状态。完整的蛋白质结构由这些"限域下最低能量结构片段"拼合而成,而蛋白质整体结构并不一定是全局性的能量最低状态。在蛋白质折叠过程中,局部片段的天然结构倾向性为强长程相互作用的形成提供主要基于焓效应的驱动力,而天然强长程相互作用的形成为局部片段的天然结构提供主要基于熵效应的稳定性。在蛋白质进化早期,可能存在一个"石器时代",即依附不同界面(比如岩石)的限域作用而稳定的多肽片段先进化出来,后由这些片段逐步进化(包括拼合)而成蛋白质。  相似文献   

7.
蛋白质-蛋白质分子对接中打分函数研究进展   总被引:2,自引:0,他引:2  
分子对接是研究分子间相互作用与识别的有效方法.其中,用于近天然构象挑选的打分函数的合理设计对于对接中复合物结构的成功预测至关重要.本文回顾了蛋白质-蛋白质分子对接组合打分函数中一些主要打分项,包括几何互补项、界面接触面积、范德华相互作用能、静电相互作用能以及统计成对偏好势等打分项的计算方法.结合本研究小组的工作,介绍了目前普遍使用的打分方案以及利用与结合位点有关的信息进行结构筛选的几种策略,比较并总结了常用打分函数的特点.最后,分析并指出了当前蛋白质-蛋白质对接打分函数所存在的主要问题,并对未来的工作进行了展望.  相似文献   

8.
蛋白质-高分子偶联物是重要的临床药物,可用于多种疾病的治疗.寻找新的生物可降解高分子材料来替代传统的聚乙二醇和发展高效、位点特异性的偶联方法是该领域目前所面临的2个重要挑战.聚氨基酸是一类具有较好生物相容性、可生物降解、含有丰富侧链官能团的仿生功能高分子,在蛋白质修饰方面具有突出的优势,是有较大潜力的聚乙二醇替代物.本专论主要从新型α-氨基酸-N-羧基酸酐(Ncarboxyanhydrides,NCA)可控开环聚合方法、聚氨基酸原位官能化制备位点特异性蛋白质偶联物、扩展功能聚氨基酸分子库调控蛋白质功能等3个方面详细介绍蛋白质-聚氨基酸领域的研究进展,并对这类新型偶联物的发展进行了简单的评述和展望.  相似文献   

9.
蛋白质相互作用预测、设计与调控   总被引:1,自引:0,他引:1  
张长胜  来鲁华 《物理化学学报》2012,28(10):2363-2380
蛋白质相互作用是生命活动在分子水平上的基本事件. 蛋白质相互作用的三维图像可以给出关键生命活动过程的分子细节. 了解蛋白质相互作用的原理有助于揭示生命活动的机制, 并在此基础上开展有重要价值的蛋白质设计. 本文对于蛋白质相互作用预测、设计和调控研究的近期进展进行了总结归纳, 介绍了作者实验室在相关领域的研究进展, 并对今后的研究方向进行了展望. 主要包括: (1) 蛋白质相互作用网络、蛋白质相互作用机制和蛋白质复合物结构计算分析; (2) 基于序列、结合位点以及复合物结构的蛋白质相互作用预测; (3)蛋白质相互作用设计方法; (4) 利用化学分子调控蛋白质相互作用的方法; (5) 针对蛋白质相互作用的蛋白质药物设计方法.  相似文献   

10.
陈鹏 《高分子学报》2016,(11):1465-1467
发展位点特异且具有明确拓扑结构的蛋白质-高分子偶联物是高分子和化学生物学领域共同面对的挑战之一.在聚合物末端精确引入一个或多个具有特殊反应活性的生物正交官能团是实现"位点特异"生物偶联的关键前提.这一过程通常比较低效、需要多步骤的官能团转化、聚合后修饰以及保护脱保护,费时且繁琐.最近,通过在聚合过程中原位生成官能团,以一锅-两步的过程得到可直接用于蛋白质偶联的异遥爪聚合物,从而实现了多种不同拓扑结构的蛋白质-聚氨基酸偶联物的快速构筑.这一简洁的合成路线实现了以前尚未获得的头-尾相接的环状偶联物的制备,使这些偶联物表现出了很强的体外酶稳定性以及热稳定性.该工作是蛋白质-高分子偶联化学的一次创新的尝试;同时,利用该方法所制备的偶联物在蛋白质药物领域具有广阔的应用前景.  相似文献   

11.
12.
Protein–protein interactions (PPIs) play essential roles in many biological processes. In protein–protein interaction networks, hubs involve in numbers of PPIs and may constitute an important source of drug targets. The intrinsic disorder proteins (IDPs) with unstable structures can promote the promiscuity of hubs and also involve in many disease pathways, so they also could serve as potential drug targets. Moreover, proteins with similar functions measured by semantic similarity of gene ontology (GO) terms tend to interact with each other. Here, the relationship between hub proteins and drug targets based on GO terms and intrinsic disorder was explored. The semantic similarities of GO terms and genes between two proteins, and the rate of intrinsic disorder residues of each protein were extracted as features to characterize the functional similarity between two interacting proteins. Only using 8 feature variables, prediction models by support vector machine (SVM) were constructed to predict PPIs. The accuracy of the model on the PPI data from human hub proteins is as high as 83.72%, which is very promising compared with other PPI prediction models with hundreds or even thousands of features. Then, 118 of 142 PPIs between hubs are correctly predicted that the two interacting proteins are targets of the same drugs. The results indicate that only 8 functional features are fully efficient for representing PPIs. In order to identify new targets from IDP dataset, the PPIs between hubs and IDPs are predicted by the SVM model and the model yields a prediction accuracy of 75.84%. Further research proves that 3 of 5 PPIs between hubs and IDPs are correctly predicted that the two interacting proteins are targets of the same drugs. All results demonstrate that the model with only 8-dimensional features from GO terms and intrinsic disorder still gives a good performance in predicting PPIs and further identifying drug targets.  相似文献   

13.
Multivalent interactions between amino acid residues of intrinsically disordered proteins (IDPs) drive phase separation of these proteins into liquid condensates, forming various membrane-less organelles in cells. These interactions between often biased residues of IDPs are also likely involved in selective recruitment of many other IDPs into condensates. However, determining factors for this IDP recruitment into protein condensates are not understood yet. Here, we quantitatively examined recruitment tendencies of various IDPs with different sequence compositions into IDP-clustered condensates both in vitro as well as in cells. Condensate-forming IDP scaffolds, recruited IDP clients, and phase separation conditions were carefully varied to find key factors for selective IDP partitioning in protein condensates. Regardless of scaffold sequences, charged residues in client IDPs assured potent IDP recruitment, likely via strong electrostatic interactions, where positive residues could further enhance recruitment, possibly with cation–pi interactions. Notably, poly-ethylene glycol, a widely used crowding reagent for in vitro phase separation, abnormally increased IDP recruitment, indicating the need for careful use of crowding conditions. Tyrosines of IDP clients also strongly participated in recruitment both in vitro and in cells. Lastly, we measured recruitment degrees by more conventional interactions between folded proteins instead of disordered proteins. Surprisingly, recruitment forces by an even moderate protein interaction (Kd ∼ 5 μM) were substantially stronger than those by natural IDP–IDP interactions. The present data offer valuable information on how cells might organize protein partitioning on various protein condensates.

Diverse interactions between folded and disordered proteins collectively dictate selective protein recruitment into bimolecular condensates.  相似文献   

14.
Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well‐characterized folding upon binding to dynamic fuzzy complexes. To date, most studies concern the binding of an IDP to a structured protein, while the interaction between two IDPs is poorly understood. In this study, NMR, smFRET, and molecular dynamics (MD) simulation are combined to characterize the interaction between two IDPs, the C‐terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by molecular dynamics and mutagenesis studies. This study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.  相似文献   

15.
Specific protein–protein interactions are critical to cellular function. Structural flexibility and disorder‐to‐order transitions upon binding enable intrinsically disordered proteins (IDPs) to overcome steric restrictions and form complementary binding interfaces, and thus, IDPs are widely considered to have high specificity and low affinity for molecular recognition. However, flexibility may also enable IDPs to form complementary binding interfaces with misbinding partners, resulting in a great number of nonspecific interactions. Consequently, it is questionable whether IDPs really possess high specificity. In this work, we investigated this question from a thermodynamic viewpoint. We collected mutant thermodynamic data for 35 ordered protein complexes and 43 disordered protein complexes. We found that the enthalpy–entropy compensation for disordered protein complexes was more complete than that for ordered protein complexes. We further simulated the binding processes of ordered and disordered protein complexes under mutations. Simulation data confirmed the observation of experimental data analyses and further revealed that disordered protein complexes possessed smaller changes in binding free energy than ordered protein complexes under the same mutation perturbations. Therefore, interactions of IDPs are more malleable than those of ordered proteins due to their structural flexibility in the complex. Our results provide new clues for exploring the relationship between protein flexibility, adaptability, and specificity.  相似文献   

16.
Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand‐specific functional structures. For such multi‐structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single‐molecule and ensemble techniques to compare ligand‐induced and osmolyte‐forced folding of α‐synuclein. Our results reveal context‐dependent modulation of the protein′s folding landscape, suggesting that the codes for the protein′s native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.  相似文献   

17.
While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable technique for addressing many of the fundamental questions regarding the activities of IDPs. After introducing some experimental issues specific to IDPs and in relation to the latest technical developments, this article presents the interest of the theory of polymer physics to evaluate the flexibility of fully disordered proteins. The different strategies to obtain 3-dimensional models of IDPs, free in solution and associated in a complex, are then reviewed. Indeed, recent computational advances have made it possible to readily extract maximum information from the scattering curve with a special emphasis on highly flexible systems, such as multidomain proteins and IDPs. Furthermore, integrated computational approaches now enable the generation of ensembles of conformers to translate the unique flexible characteristics of IDPs by taking into consideration the constraints of more and more various complementary experiment. In particular, a combination of SAXS with high-resolution techniques, such as x-ray crystallography and NMR, allows us to provide reliable models and to gain unique structural insights about the protein over multiple structural scales. The latest neutron scattering experiments also promise new advances in the study of the conformational changes of macromolecules involving more complex systems.  相似文献   

18.
Intrinsically disordered proteins (IDPs) in cells phase separate to form diverse membraneless organelles, which have condensed liquid droplet-like properties and often contain multiple IDPs. However, how potential interactions between different IDPs affect the dynamic behavior of these protein droplets is largely unknown. Here, we develop a rapid IDP clustering system to generate protein droplets with varied residue compositions and examine diverse interacting IDPs inside droplets. Three different IDP droplets actively recruited other diverse IDPs inside droplets with extremely varied enrichment (inside/outside) degrees (over 100-fold variation) under highly crowded conditions. The recruited IDPs were mostly mobile even inside highly immobile droplets. Among the five tested IDPs, the disordered region of Ddx4 helicase with its unique multiple charged residue blocks was noticeably influenced by droplet mobility. We also discovered that droplets of different IDPs could rapidly fuse to each other. Interestingly, some droplets were heterogeneously fused with segregated subcompartments, and this segregation was enhanced by droplet maturation and was more apparent for specific IDP pairs, in which the polar and charged residue compositions are highly different. The present study not only reports multiple peculiar behaviors of interacting IDP pairs inside droplets but also provides valuable information on generating membraneless organelle models with controllable droplet properties.

Membraneless droplets of intrinsically disordered proteins (IDPs) with varied residue compositions uniquely interact with each other as droplets and clients.  相似文献   

19.
The evolvability of proteins is not only restricted by functional and structural importance, but also by other factors such as gene duplication, protein stability, and an organism's robustness. Recently, intrinsically disordered proteins (IDPs)/regions (IDRs) have been suggested to play a role in facilitating protein evolution. However, the mechanisms by which this occurs remain largely unknown. To address this, we have systematically analyzed the relationship between the evolvability, stability, and function of IDPs/IDRs. Evolutionary analysis shows that more recently emerged IDRs have higher evolutionary rates with more functional constraints relaxed (or experiencing more positive selection), and that this may have caused accelerated evolution in the flanking regions and in the whole protein. A systematic analysis of observed stability changes due to single amino acid mutations in IDRs and ordered regions shows that while most mutations induce a destabilizing effect in proteins, mutations in IDRs cause smaller stability changes than in ordered regions. The weaker impact of mutations in IDRs on protein stability may have advantages for protein evolvability in the gain of new functions. Interestingly, however, an analysis of functional motifs in the PROSITE and ELM databases showed that motifs in IDRs are more conserved, characterized by smaller entropy and lower evolutionary rate, than in ordered regions. This apparently opposing evolutionary effect may be partly due to the flexible nature of motifs in IDRs, which require some key amino acid residues to engage in tighter interactions with other molecules. Our study suggests that the unique conformational and thermodynamic characteristics of IDPs/IDRs play an important role in the evolvability of proteins to gain new functions.  相似文献   

20.
Under physiological conditions, studies of intrinsically disordered proteins (IDPs) by conventional NMR methods based on proton detection are severely limited by fast amide‐proton exchange with water. 13C detection has been proposed as a solution to the exchange problem, but is hampered by low sensitivity. We propose a new pulse sequence combining proton–nitrogen cross‐polarization and carbonyl detection to record high‐resolution, high‐sensitivity NMR spectra of IDPs under physiological conditions. To demonstrate the efficacy of this approach, we recorded a high‐quality N–CO correlation spectrum of α‐synuclein in bacterial cells at 37 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号