首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liu J  Hadad CM  Platz MS 《Organic letters》2005,7(4):549-552
Triplet carbenes react much more rapidly with oxygen than do triplet nitrenes. This trend is explained by DFT and MO calculations. [reaction: see text]  相似文献   

3.
An experimental, temperature-dependent kinetic study of the gas-phase reaction of the hydroxyl radical with molecular bromine (reaction 1) has been performed by using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over a wide temperature range of 297-766 K, and at pressures between 6.68 and 40.29 kPa of helium. The experimental rate coefficients for reaction 1 demonstrate no correlation with pressure and exhibit a negative temperature dependence with a slight negative curvature in the Arrhenius plot. A nonlinear least-squares fit with two floating parameters of the temperature-dependent k(1)(T) data set using an equation of the form k(1)(T) = AT(n) yields the recommended expression k(1)(T) = (1.85 x 10(-9))T(-0.66) cm(3) molecule(-1) s(-1) for the temperature dependence of the reaction 1 rate coefficient. The potential energy surface (PES) of reaction 1 was investigated with use of quantum chemistry methods. The reaction proceeds through formation of a weakly bound OH...Br(2) complex and a PES saddle point with an energy below that of the reactants. Temperature dependence of the reaction rate coefficient was modeled by using the RRKM method on the basis of the calculated PES.  相似文献   

4.
A pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to study the recombination of mercury and bromine atoms, Hg + Br + M --> HgBr + M (1) and the self-reaction of bromine atoms, Br + Br + M --> Br2 + M (2). Rate coefficients were determined as a function of pressure (200-600 Torr) and temperature (243-293 K) in nitrogen buffer gas and as a function of pressure (200-600 Torr) in helium buffer gas at room temperature. For reaction 1, kinetic measurements were performed under conditions in which bromine atoms were the reactant in excess concentration while simultaneously monitoring the concentration of both mercury and bromine. A temperature dependent expression of (1.46 +/- 0.34) x 10(-32) x (T/298)(-(1.86+/-1.49)) cm6 molecule(-2) s(-1) was determined for the third-order recombination rate coefficient in nitrogen buffer gas. The effective second-order rate coefficient for reaction 1 under atmospheric conditions is a factor of 9 smaller than previously determined in a recently published relative rate study. For reaction 2 we obtain a temperature dependent expression of (4.31 +/- 0.21) x 10(-33) x (T/298)(-(2.77+/-0.30)) cm6 molecule(-2) s(-1) for the third-order recombination rate coefficient in nitrogen buffer gas. The rate coefficients are reported with a 2sigma error of precision only; however, due to the uncertainty in the determination of absolute bromine atom concentrations and other unidentified systematic errors we conservatively estimate an uncertainty of +/-50% in the rate coefficients. For both reactions the observed pressure, temperature and buffer gas dependencies are consistent with the expected behavior for three-body recombination.  相似文献   

5.
The association reaction between silyl radical (SiH3) and H2O2 has been studied in detail using high-level composite ab initio CBS-QB3 and G4MP2 methods. The global hybrid meta-GGA M06 and M06-2X density functionals in conjunction with 6-311++G(d,p) basis set have also been applied. To understand the kinetics, variational transition-state theory calculation is performed on the first association step, and successive unimolecular reactions are subjected to Rice–Ramsperger–Kassel–Marcus calculations to predict the reaction rate constants and product branching ratios. The bimolecular rate constant for SiH3–H2O2 association in the temperature range 250–600 K, k(T) = 6.89 × 10?13 T ?0.163exp(?0.22/RT) cm3 molecule?1 s?1 agrees well with the current literature. The OH production channel, which was experimentally found to be a minor one, is confirmed by the rate constants and branching ratios. Also, the correlation between our theoretical work and experimental literature is established. The production of SiO via secondary reactions is calculated to be one of the major reaction channels from highly stabilized adducts. The H-loss pathway, i.e., SiH2(OH)2 + H, is the major decomposition channel followed by secondary dissociation leading to SiO.  相似文献   

6.
The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.  相似文献   

7.
The salt-free Wittig reaction of non-, semi-, and stabilized ylides has been investigated on realistic systems using density functional theory (DFT) calculations, including continuum solvation. Our results provide unequivocal support for the generally accepted mechanism and are in very good agreement with experimental selectivities. This study shows that E/Z selectivity of non- and semi-stabilized ylides cannot be fully understood without considering the energy of the elimination TS. The influence of ylide stabilization and the nature of phosphorus substituents on reversibility of oxaphosphetane formation is clarified. Unexpectedly, the puckering ability of addition TSs is shown not to depend on ylide stabilization, but the geometry of the TS is decided by an interplay of 1,2; 1,3; and C-H...O interactions in the case of non- and semi-stabilized ylides, whereas a dipole-dipole interaction governs the addition TS structures for stabilized ylides. The well-known influence of ylide stabilization on selectivity of PPh(3) derivatives is explained as follows: in non- and semi-stabilized ylides reactions, cis and trans addition TSs have, respectively, puckered and planar geometries, and selectivity is governed by an interplay of 1,2 and 1,3 interactions. For stabilized ylides, the high E selectivity is due to a strong dipole-dipole interaction at the addition TS. The influence of the nature of phosphorus substituents on selectivity is also detailed, the different behavior of (MeO)(3)PCHCO(2)Me ylides being explained by their lower dipole. This novel picture of the factors determining TS structures and selectivity provides a sound basis for the design of new ylides.  相似文献   

8.
The photophysical parameters controlling the cleavage process of 2-hydroxy-2,2-dimethylacetophenone (HDMA) were investigated in detail. Time-resolved picosecond absorption experiments show that the formation of the triplet state occurs within 20 ps after excitation and decays within hundreds of picoseconds depending on the solvent polarity. Molecular modeling reveals that three stable conformations exist in the ground state, the most stable one exhibiting an intramolecular hydrogen bond that modifies the electronic properties of the molecule. This explains quite well the steady-state absorption properties. The conformation of the most stable triplet state is twisted by 180 degrees with respect to the ground state. Computation of the potential energy surface along the molecular coordinate for the dissociation reaction evidences an electronic state crossing yielding a final sigmasigma* state, in perfect agreement with the state correlation diagram. Optimization of the transition state allows the calculation of the activation energy and the use of the transition-state theory leads to an estimate of 100 ps for the cleavage process in the gas phase. Single-point energy calculations using a solvent model predict an increase of the dissociation rate constant with the increase of the solvent polarity, in good agreement with the value deduced from kinetic measurements.  相似文献   

9.
The room temperature rate coefficient for the reaction Br+Br2O→Br2+BrO (3) has been measured using the technique of pulse-laser photolysis with long-path transient absorption detection of the BrO reaction product. A value of k3=(2.0±0.5)×10−10 cm3 molecule−1 s−1 was determined. The photolysis products of Br2O at 308 nm were also examined. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 571–576, 1998  相似文献   

10.
The potential energy surfaces (PES) for the reaction of the C(2)H radical with 1-butyne (C(4)H(6)) have been studied using the CBS-QB3 method. Density functional B3LYP/cc-pVTZ and M06-2X/6-311++G(d,p) calculations have also been performed to analyze the reaction energetics. For detailed theoretical calculation on the total reaction mechanism, the initial association reactions on more and less substituted C atoms of 1-butyne are treated separately followed by a variational transition state theory (VTST) calculation to obtain reaction rates. The successive unimolecular reactions from the association reaction complexes are subjected to Rice-Ramsperger-Kassel-Marcus (RRKM) calculations for reaction rate constants and product branching ratios. The calculated rate constants in the temperature range 70-295 K for both the association reactions are found to be highly temperature dependent at low temperatures, which is contrary to the experimental findings of temperature independent association rates. We have explained this observation with the help of variational nature of the transition states, and we found a "loose" transition state at low temperatures. The calculated product branching ratios for the unimolecular reactions generally agree with the available experimental data, although some channels show a significant method dependency and therefore the correlation with experiment is lost to some extent. Our detailed reaction energetics calculations confirm that the C(2)H + C(4)H(6) reaction proceeds without an entrance barrier and leads to the important products ethynylallene + CH(3), 1,3-hexadiyne + H, 3,4-hexadiene-1-yne + H, 2-ethynyl-1,3-butadiene + H, 3,4-dimethylenecyclobut-1-ene + H and fulvene + H exothermic by 25-75 kcal mol(-1), with strong dependence of the product distribution on the association mode of C(2)H with C(4)H(6), making these reactions fast under low temperature conditions of Titan's atmosphere. Therefore this study can provide a detailed picture of the complex hydrocarbon formation mechanism in the upper atmosphere.  相似文献   

11.
Thermal fragmentation of 2-methyloxetane (2MO), which yields two different sets of products by virtue of ring asymmetry, was studied theoretically by using DFT, MPn and CASPT2//CASSCF methods. At the MPn and DFT theoretical levels, only concerted transition states were located on the ground state potential energy surface (PES). The CASSCF approach leads to different stepwise pathways for the two fragmentation modes, with biradical as intermediates, in addition to the concerted paths, with a very shallow PES for the asynchronous region in which intermediates becomes unstable under CASPT2//CASSCF calculations. Nevertheless, activation barriers thus calculated were quite consistent with experimental values. The reaction pathway that experimentally renders the main set of products was calculated as the lowest-energy path for the fragmentation of the 2-methyloxetane heterocycle, and this evolves with an initial cleavage of the C–O bond of the oxetane ring.  相似文献   

12.
The radical-molecule reaction mechanisms of CH2Br and CHBrCl with NO2 have been explored theoretically at the UB3LYP/6-311G(d, p) level. The single-point energies were calculated using UCCSD(T) and UQCISD(T) methods. The results show that the title reactions are more favorable on the singlet potential energy surface than on the triplet one. For the singlet potential energy surface of CH2Br + NO2 reaction, the association of CH2Br with NO2 is found to be a barrierless carbon-to-oxygen attack forming the adduct IM1 (H2BrCONO-trans), which can isomerize to IM2 (H2BrCNO2), and IM3 (H2BrCONO-cis), respectively. The most feasible pathway is the 1, 3-Br shift with C–Br and O–N bonds cleavage along with the N–Br bond formation of IM1 lead to the product P1 (CH2O + BrNO) which can further dissociate to give P4 (CH2O + Br + NO). The competitive pathway is the 1, 3-H-shift associated with O–N bond rupture of IM1 to form P2 (CHBrO + HNO). For the singlet potential energy surface of CHBrCl + NO2 reaction, there are three important reaction pathways, all of which may have comparable contribution to the reaction of CHBrCl with NO2. The theoretically obtained major products CH2O and CHClO for CH2Br + NO2 and CHBrCl + NO2 reactions, respectively, are in good agreement with the kinetic detection in experiment.  相似文献   

13.
14.
Various amines have been considered as materials for chemical capture of CO(2) through liquid-phase reactions to form either carbamate or carbamic acid products. One of the main challenges in these CO(2)-amine reactions lies in tuning the heat of reaction to achieve the correct balance between the extent of reaction and the energy cost for regeneration. In this work, we use a computational approach to study the effect of substitution on the heats of reaction of monoethanolamine (MEA). We use ab initio methods at the MP2/aug-cc-pVDZ level, coupled with geometries generated from B3LYP/6-311++G(d,p) density functional theory along with the conductor-like polarizable continuum model to compute the heats of reaction. We consider two possible reaction products: carbamate, having a 2:1 amine:CO(2) reaction stoichiometry, and carbamic acid, having a 1:1 stoichiometry. We have considered CH(3), NH(2), OH, OCH(3), and F substitution groups at both the α- and β-carbon positions of MEA. We have experimentally measured heats of reaction for MEA and both α- and β-CH(3)-substituted MEA to test the predictions of our model. We find quantitative agreement between the predictions and experiments. We have also computed the relative basicities of the substituted amines and found that the heats of reaction for both carbamate and carbamic acid products are linearly correlated with the computed relative basicities. Weaker basicities result in less exothermic heats of reaction. Heats of reaction for carbamates are much more sensitive to changes in basicity than those for carbamic acids. This leads to a crossover in the heat of reaction so that carbamic acid formation becomes thermodynamically favored over carbamate formation for the weakest basicities. This provides a method for tuning the reaction stoichiometry from 2:1 to 1:1.  相似文献   

15.
A computational study of the isomerization reaction of a series of halodiazirines to halodiazo compounds (cyclic to open-chain RXCN2 species) has been carried out in order to establish the effect of the substituent groups on the isomerization rates and to obtain computational evidence of reaction mechanisms. Fluorine and chlorine were present as the halogen (X) atom, and the groups R=H, CH3, C2H5, n-C3H7, i-C3H7, cyclo-C3H5, phenyl, OCH3 and OH were used. Thermochemical calculations and natural bond orbital analyses were carried out at the B3LYP/6-31+G(d,p) level of theory. The results allowed us to discuss a reaction mechanism that proceeds in two steps: The first is the extrusion of nitrogen and formation of a carbene through a cyclic transition state that promotes the simultaneous breaking of the two C–N bonds, and the second one is described as the rebounding between the carbene and one of the nitrogen atoms of molecular nitrogen, both formed in the first step. The enthalpies of formation of halodiazirines and halodiazoalkanes have been calculated at the G3 level of theory.  相似文献   

16.
The reactants, products, and transition states of the CH2O + NO2 reaction on the ground electronic potential energy surface have been searched at both B3LYP/6?311+G(d,p) and MPW1PW91/6?311+G(3df,2p) levels of theory. The forward and reverse barriers are further improved by a modified Gaussian‐2 method. The theoretical rate constants for the two most favorable reaction channels 1 and 2 producing CHO + cis‐HONO and CHO + HNO2, respectively, have been calculated over the temperature range from 200 to 3000 K using the conventional and variational transition‐state theory with quantum‐mechanical tunneling corrections. The former product channel was found to be dominant below 1500 K, above which the latter becomes competitive. The predicted total rate constants for these two product channels can be presented by kt (T) = 8.35 × 10?11 T6.68 exp(?4182/T) cm3/(mol s). The predicted values, which include the significant effect of small curvature tunneling corrections, are in quantitative agreement with the available experimental data throughout the temperature range studied (390–1650 K). © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 184–190, 2003  相似文献   

17.
Imidazolidin-4-ones are commonly employed as skeletal modifications in bioactive oligopeptides, either as proline surrogates or for protection of the N-terminal amino acid against aminopeptidase- and endopeptidase-catalyzed hydrolysis. Imidazolidin-4-one synthesis usually involves the reaction of an alpha-aminoamide moiety with a ketone or an aldehyde to yield an imine, followed by intramolecular cyclization. We have unexpectedly found that imidazolidin-4-one formation is stereoselective when benzaldehydes containing o-carboxyl or o-methoxycarbonyl substituents are reacted with alpha-aminoamide derivatives of the antimalarial drug primaquine. A systematic computational and experimental study on the stereoselectivity of imidazolidin-4-one formation from primaquine alpha-aminoamides and various substituted benzaldehydes has been carried out, and they have allowed us to conclude that intramolecular hydrogen-bonds involving the C=O oxygen of the o-substituent play a crucial role.  相似文献   

18.
The details of reaction mechanism of imidogen (NH) and hydroxyl radicals are explored at the UMP2(FC)/cc–pVDZ and PMP4(FC,SDTQ)/cc–pVQZ//UMP2 + ZPE levels, theoretically. The initial association between NH and OH radicals leads to the formation of the intermediates, NH…OH, HN…HO, cis HNOH, and trans HNOH, through the barrierless and exothermic processes. By starting from the initial intermediates, all possible paths for the formation of H + HNO, H2 + NO, H2O + 4N, H2N + 3O, and H + 3HON products are investigated on potential energy surface. The results reveal that H2O + 4N is the main product involved in the mechanism of hydrogen atom abstraction of NH by OH radical through the intermediate NH…OH.  相似文献   

19.
A novel stereoselective Mannich-type reaction of chiral aldimines with 2-silyloxybutadienes in the presence of zinc triflate and water has been achieved. The diastereoselectivities of the products were 74-90% de, and no cycloadducts were detected. Classical Mannich-type products were also obtained by using zinc triflate and water with high diastereoselectivities.  相似文献   

20.
The reaction of Os~+(~6D,~4F) with N_2O has been investigated at B3LYP/TZVP and CCSD(T)/6-311+G~* levels of theory.The mechanisms corresponding to O-atom and N-atom transfer reactions have been revealed.It was found that on the sextet reaction surface both the O-atom and N-atom transfer reactions undergo through direct-abstraction mechanism,leading to the formation of OsO~+ and OsN~+,whereas on quartet surface the two reactions undergo through O-N bond or N-N bond insertion mechanism.The calculated energ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号