首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the problem of obtaining optimal controllers which minimize a quadratic cost function for the rotational motion of a rigid body. We are not concerned with the attitude of the body and consider only the evolution of the angular velocity as described by the Euler equations. We obtain conditions which guarantee the existence of linear stabilizing optimal and suboptimal controllers. These controllers have a very simple structure.  相似文献   

2.
The asymptotic stability and instability of the trivial solution of a functional-differential equation of delay type relative to part of the variables are investigated using limit equations and a Lyapunov function whose derivative is sign-definite. The theorems thus obtained are used to solve the problem of stabilizing mechanical control systems with delayed feedback. As examples, solutions of problems of the uniaxial and triaxial stabilization of the rotational motion of a rigid body with a delay in the control system are presented.  相似文献   

3.
In this work, the problem of optimal stabilization of the equilibrium positions of a rigid body using internal rotors is studied. The conditions for the optimal stabilization of the equilibrium positions are used to deduce a feedback control law as functions of the phase coordinates of the body and the parameters describing the equilibrium positions. The Lyapunov function is used to prove the asymptotic stability of these positions. Special cases and analysis of the obtained results are presented to assess the present method. Moreover, some of the results are compared with those obtained in the literature using other methods. In contrast to the usual methods in the literature, which stabilize some of the equilibrium positions of the rigid body, the present one has the advantage of stabilizing all the equilibrium positions with optimal control law.  相似文献   

4.
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and moving-horizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.  相似文献   

5.
Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitation is studied. The equation of motion of the system is first reduced to an averaged Itô stochastic differential equation by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function of first-passage failure is established. The conditional reliability function, and the conditional probability density are obtained by solving the backward Kolmogorov equation with boundary conditions. Finally, the cost function and optimal control forces are determined by the requirements of stabilizing the system by evaluating the maximal Lyapunov exponent. The numerical results show that the procedure is effective and efficiency.  相似文献   

6.
The problem of stabilizing the motions of mechanical systems that can be described by non-autonomous systems of ordinary differential equations is considered. The sufficient conditions for stabilizing of the motions of mechanical systems with assigned forces due to forces of another structure are obtained by constructing a vector Lyapunov function and a reference system. Examples of the solution of the problems of stabilizing the rotational motion of an axisymmetric satellite in an elliptic orbit, a non-tumbling gyro horizon, etc. are considered ©2009  相似文献   

7.
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.  相似文献   

8.
A holonomic mechanical system with variable masses and cyclic coordinates is considered. Such a system can have generalized steady motions in which the positional coordinates are constant and the cyclic velocities under the action of reactive forces vary according to a given law. Sufficient Routh-Rumyantsev-type conditions for the stability of such motions are determined. The problem of stabilizing a given translational-rotational motion of a symmetric satellite in which its centre of mass moves in a circular orbit and the satellite executes rotational motion about its axis of symmetry is solved.  相似文献   

9.
The present paper is devoted to discuss both the chaos and optimal control of the steady rotations of a satellite-gyrostat on a circular orbit. In this the satellite is controlled with the help of three independent control moments that are developed by three rotors attached to the satellite principal axes of inertia and rotate with the help of motors rigidly mounted on the satellite body. The optimal controllers that asymptotically stabilize these chaotic rotations and minimize the required like-energy cost are derived as a function of the phase coordinates of the system. The asymptotic stability of the resulting nonlinear system is proved using the Liapunov technique. Numerical study and examples are introduced.  相似文献   

10.
An analytic–numerical method for the construction of a reference law of operation for a class of dynamic systems describing vibrations in controlled mechanical systems is proposed. By the reference law of operation of a system, we mean a law of the system motion that satisfies all the requirements for the quality and design features of the system under permanent external disturbances. As disturbances, we consider polyharmonic functions with known amplitudes and frequencies of the harmonics but unknown initial phases. For constructing the reference law of motion, an auxiliary optimal control problem is solved in which the cost function depends on a weighting coefficient. The choice of the weighting coefficient ensures the design of the reference law. Theoretical foundations of the proposed method are given.  相似文献   

11.
The rectilinear motion of a two-mass system in a resistive medium is considered. The motion of the system as a whole occurs by longitudinal periodic motion of one body (the internal mass) relative to the other body (the shell). The problem consists of finding the periodic law of motion of the internal mass that ensures velocity-periodic motion of the shell at a specified average velocity and minimum energy consumption. The initial problem reduces to a variational problem with isoperimetric conditions in which the required function is the velocity of the shell. It is established that, with optimal motion, the shell velocity is a piecewise-constant time function taking two values (a positive value and a negative value). The magnitudes of these velocities and the overall size of the intervals in which they are taken are uniquely defined, while the optimal motion itself is non-uniquely defined. The simplest optimal motion, for which the period is divided into two sections – one with a positive velocity and the other with a negative velocity of motion of the shell – is investigated in detail. It is shown that, among all the optimal motions, this simplest motion is characterized by the maximum amplitude of oscillations of the internal mass relative to the shell. © Elsevier Ltd. All rights reserved.  相似文献   

12.
We consider a linear system with additive noise in Hilbert space and minimize a convex functional associated with this process. A necessary and sufficient condition for a control to be optimal is derived by evaluating the subdifferential of the cost function. Then the subdifferential of the value function is characterized. Finally using these results and a conditional value function, optimal controls are characterized as a feedback law in terms of the value function.  相似文献   

13.
考虑具有二次成本函数的随机线性系统,研究了状态反馈控制的保证成本控制问题.依据线性矩阵不等式得到了保证成本控制器存在的充分条件,最后得到了随机线性闭环系统保证成本最小的最优保证成本控制律的表达式.  相似文献   

14.
The optimal control of transverse vibration of two Euler–Bernoulli beams coupled in parallel by discrete springs is considered. An index of performance is formulated which consists of a modified energy functional of two coupled structures at a specified time and penalty functions involving the point control forces. The minimization of the performance index over these forces is subject to the equation of motion governing the structural vibrations, the imposed initial condition as well as the boundary conditions. By use of the modal space technique, the optimal control of distributed parameter systems is simplified into the optimal control of a linear time-invariant lumped-parameter systems. A computationally attractive method based on Legendre wavelets in time domain for solving the optimal control of the lumped parameter systems for any finite interval is proposed. Legendre wavelet integral operational matrix and the properties of a Kronecker product are used to find the approximated optimal trajectory and optimal law of the linear systems with respect to a quadratic cost function by only solving a linear system of algebraic equations. This method provides a straightforward and convenient approach for digital computation. A numerical example is provided to demonstrate the applicability and effectiveness of the proposed method.  相似文献   

15.
This paper presents a two-step generation of the equations of motion of planar mechanisms using point and joint coordinates. First, the formulation replaces a rigid body by a dynamically equivalent constrained system of particles and uses Newton’s second law to study the motion of the particles without introducing any rotational coordinates. Then, the equations of motion are transformed to a reduced set in terms of selected relative joint variables using a velocity transformation matrix. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and few cut-joints constraint equations are included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.  相似文献   

16.
This paper studies bounded-velocity control of a Brownian motion when discretionary stopping, or ‘leaving’, is allowed. The goal is to choose a control law and a stopping time in order to minimize the expected sum of a running and a termination cost, when both costs increase as a function of distance from the origin. There are two versions of this problem: the fully observed case, in which the control multiplies a known gain, and the partially observed case, in which the gain is random and unknown. Without the extra feature of stopping, the fully observed problem originates with Beneš (Stochastic Process. Appl. 2 (1974) 127–140), who showed that the optimal control takes the ‘bang–bang’ form of pushing with maximum velocity toward the origin. We show here that this same control is optimal in the case of discretionary stopping; in the case of power-law costs, we solve the variational equation for the value function and explicitly determine the optimal stopping policy.We also discuss qualitative features of the solution for more general cost structures. When no discretionary stopping is allowed, the partially observed case has been solved by Beneš et al. (Stochastics Monographs, Vol. 5, Gordon & Breach, New York and London, pp. 121–156) and Karatzas and Ocone (Stochastic Anal. Appl. 11 (1993) 569–605). When stopping is allowed, we obtain lower bounds on the optimal stopping region using stopping regions of related, fully observed problems.  相似文献   

17.
In this paper, the task of achieving the soft landing of a lunar module such that the fuel consumption and the flight time are minimized is formulated as an optimal control problem. The motion of the lunar module is described in a three dimensional coordinate system. We obtain the form of the optimal closed loop control law, where a feedback gain matrix is involved. It is then shown that this feedback gain matrix satisfies a Riccati-like matrix differential equation. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, we present a practical method to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results show that the proposed approach is highly effective.  相似文献   

18.
This paper is concerned with the motion of a helical body in an ideal fluid, which is controlled by rotating three internal rotors. It is proved that the motion of the body is always controllable by means of three rotors with noncoplanar axes of rotation. A condition whose satisfaction prevents controllability by means of two rotors is found. Control actions that allow the implementation of unbounded motion in an arbitrary direction are constructed. Conditions under which the motion of the body along an arbitrary smooth curve can be implemented by rotating the rotors are presented. For the optimal control problem, equations of sub-Riemannian geodesics on SE(3) are obtained.  相似文献   

19.
The Nerlove-Arrow model of optimal dynamic advertising policies is generalized by incorporating a continuously distributed lag between advertising expenditures and increases in the stock of goodwill. This leads to a control problem where the equation of motion is given by an integro-differential equation. The transitory and steady-state properties of the optimal policies are examined, both for a general lag function and for a gamma distributed lag. The dependence of the steady-state solution on the parameters of the gamma distribution is also investigated. An example is given using specific demand and cost functions.  相似文献   

20.
Mechanical systems possibly containing non-holonomic constraints are considered. The problem of stabilizing the motion of the system along a given manifold of its phase space is solved. A control law which does not involve the dynamcal parameters of the system is constructed. The law is universal, that is, it stabilizes motion along any given manifold. It is only necessary that the manifold be feasible, that is, conform to the dynamics of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号