首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rouhollahi A  Shamsipur M  Amini MK 《Talanta》1994,41(9):1465-1469
The complex formation of Hg(2+) with some macrocyclic crown ethers in nitrobenzene, acetonitrile and dimethylformamide solutions was studied by differential pulse polarography at 25 degrees C. The stoichiometry and stability of the complexes were determined by monitoring the shift in the Hg(2+) differential pulse peak potential against the ligand concentration. The stability of the resulting 1:1 complexes vary in the order dicyclohexyl-18-crown-6 > 18-crown-6 > 15-crown-5 > dibenzo-18-crown-6 > dibenzo-24-crown-8 > benzo-15-crown-5 > 12-crown-4. There is an inverse relationship between the complex stability and the Gutmann donor number of solvents.  相似文献   

2.
在冠醚与阳离子配位作用的热力学性质研究中,含苯并冠醚与金属离子配伍作用的能力低于母体冠醚[1].一般认为,这是由于苯环的吸电子效应降低了邻近二个供电氧原子的电荷密度所致,而很少注意引入亚甲基降低苯环的吸电子效应对冠醚配伍作用的影响.我们近来的研究表明,在较阶队骨格冠醚分子中引入额外的亚甲基,与母体冠醚相比,对于键和钠离子具有高度的选择性.这对于设计和合成具有高选择性的功能冠醚,可作为一个较有力的。具[2-4].为了进一步探索在给定供电氧原子的情况下,冠醚的扩环效应,我们研究了含二苯并冠醚(化合物I-m)…  相似文献   

3.
The complexation behavior of nicotinamide with macrocyclic polyethers viz, 15-crown-5, benzo-15-crown-5, 18-crown-6, dicyclohexano-18-crown-6, dibenzo-18-crown-6, dibenzo-24-crown-8, 1,4,7,10,13,16-hexathiacyclooctadecane, monoaza-15-crown-5, 1,4,10-trioxa-7,13-diaza-cyclopentadecane, 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane, 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, 1,4,7-tritosyl-1,4,7-triazacyclononane, 1,4,7,10-tetratosyl-1,4,7,10-tetraazacyclododecane and 1,4,8,11-tetraazacyclooctadecane has been studied in dimethylsulphoxide (DMSO) and 90% DMSO + water using differential pulse polarography and complexation constants have been reported. Nicotinamide forms stable complexes with six-membered coronand rings of the crown ethers. The nature of the atoms (oxygen, sulfur and nitrogen) in the coronand ring is observed to affect the stability of the complex. The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in peak potentials of the polarograms of nicotinamide against the ligand concentration. The Gibbs free energy change turns out to be negative at 25°C, which indicates the spontaneity of the binding of nicotinamide with crown ethers. The mole ratio of nicotinamide to the macrocyclic compound was also determined and it was found that the complexes were of 1:1 type with respect to crown ethers. The tendency of nicotinamide to form complexes with macrocycles is found to be greater in DMSO than in DMSO + water.  相似文献   

4.
The complexation reactions between the Tl+ ion and large crown ethers dibenzo-30-crown-10 (DB30C10), dibenzo-27-crown-9 (DB27C9), dibenzo-24-crown-8 (DB24C8) and dibenzo-21-crown-7 (DB21C7) were studied in different acetonitrile-water mixtures at 25°C using an a.c. polarographic technique. The stoichiometry and stability of the complexes were determined by monitoring the shift in peak potential of the polarographic waves of the metal ion against the crown concentration. In all solvent mixtures used, the stability of the resulting 1:1 complexes was found to vary in the order DC24C8 » DB30C10 > DB21C7 > DB27C9 > DB24C8. There is an inverse relationship between the complex formation constants and the amount of water in the mixed solvent. In all cases, a linear relation was observed between log Kf and the mole fraction of acetonitrile in its mixtures with water.  相似文献   

5.
Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed.  相似文献   

6.
The complexation reactions between the macrocyclic polyethers dibenzo-18-crown-6, benzo-18-crown-6, benzo-15-crown-5 and polyethers bearing a stilbene unit with alkali metal and silver cations have been studied conductometrically in nitromethane. The formation constants of 1 : 1 and 1 : 2 (metal : ligand) complexes were determined and found to decrease with increasing cation diameter. The stability of the stilbene crown – metal cation complexes is lower than for complexes of other investigated crown ethers with analogous cations. There seem to be some effects of double bond-silver ion interactions.  相似文献   

7.
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.  相似文献   

8.
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions.  相似文献   

9.
1H NMR spectroscopy was used to investigate the stoichiometry and stability of the drug ketamine cation complexes with some crown ethers, such as 15-crown-5 (15C5), aza-15-crown-5 (A15C5), 18-crown-6 (18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6), dibenzyl-diaza-18-crown-6 (DBzDA18C6) and cryptant [2,2,2] (C222) in acetonitrile (AN), dimethylsulfoxide (DMSO) and methanol (MeOH) at 27 degrees C. In order to evaluate the formation constants of the ketamine cation complexes, the CH3 protons chemical shift (on the nitrogen atom of ketamine) was measured as function of ligand/ketamine mole ratio. The formation constant of resulting complexes were calculated by the computer fitting of chemical shift versus mole ratio data to appropriate equations. A significant chemical shift variation was not observed for 15C5 and 18C6. The stoichiometry of the mono aza and diaza ligands are 1:1 and 1:2 (ligand/ketamine), respectively. In all of the solvents studied, DA18C6 formed more stable complexes than other ligands. The solvent effect on the stability of these complexes is discussed.  相似文献   

10.
Specific features of the synthesis of polycyclic crown ethers dibenzo-18-crown-6 and dibenzo-24-crown-8 and their dinitro and diamino derivatives have been studied. A mixture of isomers of dibenzocrown ether derivatives was obtained and separated. The spectral and thermal characteristics of the synthesized compounds and the kinetics of synthesis of dibenzo-24-crown-8 by the two-component condensation of pyrocatechol with 1-chloro-2-[2-(2-chloroethoxy)ethoxy]ethane in an alcoholic medium in the presence of a KOH template agent were studied.  相似文献   

11.
A method for the synthesis of complexes of sodium and lithium borohydrides with crown ethers is proposed. The complexes of sodium borohydride with benzo-15-crown-5, 4′-aminobenzo-15-crown-5, dibenzo-18-crown-6, and diaza-18-crown-6 and the complexes of lithium borohydride with benzo-15-crown-5 and dibenzo-18-crown-6 are synthesized. These complexes can be used for the preparation of hydrogen in their reactions with methanol. The complex formation does not affect the purity of hydrogen formed.  相似文献   

12.
The interaction of the amidosulfuric acid NH 3 SO 3 with 15 distal and proximal dibenzocrown ethers, including diphenyloxide, diphenylsulfide and biphenyl ones leads to the stable (1:1) complexes only in the case of [2.4]- and [1.5]dibenzo-18-crown-6 and biphenyl-20-crown-6. According to the data of the X-ray analysis, in the two last adducts the amidosulfuric acid coordinates to hexadentate crown ethers in a zwitterion form through a near-ideal ‘tripod’ arrangement to alternate crown oxygen atoms. The conformations of crown molecules are different in complexes and in initial macrocyclic ligands.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

13.
The complexation reaction of phenylaza-15-crwon-5, 4- nitrobenzo- 15-crown-5, and benzo-15-crown-5 with Ag+, Tl+ and Pb2+ ions in methanol solution have been studied by a competitive potentiometric method. The Ag+/Ag electrode used both as an indicator and reference electrode in a concentration cell. The emf of cell monitored as the crown ethers concentration varies through the titration. The stoichiometry and stability constants of resulting complexes have been evaluated by MINIQUAD. The stoichiometry for all resulting complexes was 1:1. The stability of these metal ions with derivatives of 15-crown-5 are in order phenylaza-15-crown-5 > Benzo-15-crown-5 > 4-nitrobenzo-15-crown-5, and for the each used crown ethers are as Pb2+ > Ag+ > Tl+. The effect of the substituted group on the stability of resulting complexes was considered. The obtained results are novel and interesting.  相似文献   

14.
腙型双冠醚对碱金属的配位性能   总被引:1,自引:1,他引:1  
本文报道了五个腙型双冠醚的合成。电导测定结果表明含苯并-15-冠-5单元的双冠醚与四苯基硼酸钾、铷、铯,含苯并-18-冠-6单元的双冠醚与四苯基硼酸铯生成2:1夹心型配合物(冠醚单元:金属离子)。并用这些双冠醚的氯仿溶液萃取苦味酸碱金属盐水溶液,测定了萃取百分率和计算了萃取平衡常数,结果表明腙型双冠醚的萃取能力及选择性优于相应的单冠醚。  相似文献   

15.
The complexation reaction of phenylaza-15-crown-5, and 4-nitrobenzo-15-crown-5, benzo-15-crown-5 and dibenzopyrdino-18-crwon-6, dibenzo-18-crown-6,dicyclohexyl-18-crown-6(cis and trans), and 18-crown-6 with Na+ ion in methanol have been studied by potentiometric method. The Na+ ion-selective electrode has been used both as indicator and reference electrode. The stoichiometry and stability constants of complexes of these crown ethers with sodium ion were evaluated by MINIQUAD program. The major trend of stability of resulting complexes of these macrocycle with Na+ ion varied in the order DCY18C6 > DB18C6 > 18C6 > DBPY18C6 > phenylaza-15C5 > benzo-15C5 > 4-nitrobenzo-15C5. The obtained results in particular stability constant of complexes of DBPY18C6, phenylaza-15C5 and 4-nitrobenzo-15C5 with sodium ion in comparison with other crowns ether are novel, and interesting.  相似文献   

16.
Formation of the charge transfer complexes between benzo-15-crown-5, dibenzo-18-crown-6, dibenzo-24-crown-8 and dibenzo-crown-10 and the π-acceptors DDQ and TCNE in dichloromethane solution was investigated spectrophotometrically. The molar absorptivities and formation constants of the resulting 1:1 molecular complexes were determined. The stabilities of the complexes of both π-acceptors vary in the order DB18C6 > DB3OC10 ⋍ DB24C8 > B15C5. All of the resulting complexes were isolated in crystalline form and characterized. The influences of potassium ion on the formation and stability of the TCNE molecular complexes were studied. Effects of the crown ether structure and the role of the K+ ion on the formation of charge transfer complexes are discussed.  相似文献   

17.
23Na NMR measurements were employed to monitor the stability of Na+ ion complexes with 18-crown-6 (18C6), dicycloxyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6), 15-crown-5 (15C5) and benzo-15-crown-5 (B15C5) in binary acetonitrile–dimethylformamide mixtures of varying composition. In all cases, the variation of 23Na chemical shift with [crown]/[Na+] mole ratios indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation which relates the observed chemical shifts to the formation constants. It was found that, in pure acetonitrile, the stabilities of the resulting 1:1 complexes vary in the order 15C5>DC18C6>B15C5>18C6>DB18C6, while in pure dimethylformamide the stability order is DC18C6>18C6>15C5>B15C5>DB18C6. The observed changes in the stability order could be related to the specific interactions between some crown ethers and acetonitrile. It was found that, in the case of all complexes, an increase in the percentage of dimethylformamide in the solvent mixtures would significantly decrease the stability of the complexes.  相似文献   

18.
Complex formation and stability constants between silver(I) and monoaza-12-crown, monoaza-15-crown, and monoaza-18-crown ethers with anthraquinone were determined in acetonitrile, methanol, and propylene carbonate by potentiometric and UV-spectrophotometric methods. Complexes of 1?:?1 and 1?:?2 metal-to-ligand stoichiometry were formed. The solvent composition and the size of the macrocyclic ring affect the stability constants of the complexes. The energetically most favorable structures of the 1?:?1 metal-to-ligand complexes were calculated and visualized by the AM1d method at a semiempirical level of theory.  相似文献   

19.
The formation of molecular complexes with 1 : 1 stoichiometry between 2,4,6-trinitrophenol and aza-12-crown-4, aza-15-crown-5 and aza-18-crown-6 in chloroform solution was investigated spectrophotometrically. The resulting complexes were isolated and characterized by microchemical analysis, IR and NMR spectroscopy. The equilibrium constants of the 1 : 1 adducts were evaluated from the non-linear least-squares fitting of the absorbance-mole ratio data. The overall stability of the 2,4,6-trinitrophenol complexes was found to vary in the order aza-15-crown-5 > aza-18-crown-6 aza-12-crown-4. The kinetics of complex formation between 2,4,6-trinitrophenol and the aza-substituted crown ethers used were investigated and in all cases the results showed the occurrence of an oscillating chemical reaction in solution.  相似文献   

20.
Crystalline complexes of urea and thiourea with crown ethers, have been prepared, viz., 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 (DC 18C6) and dibenzo-24-crown-8 (DB24C8). While the complexes of the large ring size crown ether, DB24C8, have high ether to (thio)urea ratios, the stoichiometry of the others lies between one molecule of crown ether and from one to six molecules of (thio)urea. An IR spectral study of the urea and thiourea complexes showed that the behavior of thiourea in these complexes is clearly different from that of urea, indicating the role of sulphur in the interaction of thiourea with crown ethers. The urea and thiourea complexes were classified according to their stoichiometries and their IR spectral behavior into three classes for which credible structures were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号