首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a sine-cosine method is used to construct many periodic and solitary wave solutions to two nonlinear evolution systems: the coupled quadratic nonlinear equations and the coupled Klein-Gordon-Schrödinger equations. Under different parameter conditions, explicit formulas for some new periodic and solitary wave solutions are successfully obtained. The proposed solutions are found to be important for the explanation of some practical physical problems.  相似文献   

2.
In general, weakly nonlinear high frequency almost periodic wave trains for systems of hyperbolic conservation laws interact and resonate to leading order. In earlier work the first two authors and J. Hunter developed simplified asymptotic equations describing this resonant interaction. In the important special case of compressible fluid flow in one or several space dimensions, these simplified asymptotic equations are essentially two inviscid Burgers equations for the nonlinear sound waves, coupled by convolution with a known kernel given by the sum of the initial vortex strength and the derivative of the initial entropy. Here we develop some of the remarkable new properties of the solutions of this system for resonant acoustics. These new features include substantial almost periodic exchange of energy between the nonlinear sound waves, the existence of smooth periodic wave trains, and the role of such smooth wave patterns in eliminating or suppressing the strong temporal decay of sawtooth profile solutions of the decoupled inviscid Burgers equations. Our approach combines detailed numerical modeling to elucidate the new phenomena together with rigorous analysis to obtain exact solutions as well as other elementary properties of the solutions of this system.  相似文献   

3.
一类广义耦合的非线性波动方程组时间周期解的存在性   总被引:1,自引:1,他引:0  
研究了一类广义耦合的非线性波动方程组关于时间周期解的问题.首先利用Galerkin方法构造近似时间周期解序列,然后利用先验估计和Laray-Schauder不动点原理,证明近似时间周期解序列的收敛性,从而得到该问题时间周期解的存在性.  相似文献   

4.
We show that the superposition principle applies to coupled nonlinear Schrödinger equations with cubic nonlinearity where exact solutions may be obtained as a linear combination of other exact solutions. This is possible due to the cancelation of cross terms in the nonlinear coupling. First, we show that a composite solution, which is a linear combination of the two components of a seed solution, is another solution to the same coupled nonlinear Schrödinger equation. Then, we show that a linear combination of two composite solutions is also a solution to the same equation. With emphasis on the case of Manakov system of two-coupled nonlinear Schrödinger equations, the superposition is shown to be equivalent to a rotation operator in a two-dimensional function space with components of the seed solution being its coordinates. Repeated application of the rotation operator, starting with a specific seed solution, generates a series of composite solutions, which may be represented by a generalized solution that defines a family of composite solutions. Applying the rotation operator to almost all known exact seed solutions of the Manakov system, we obtain for each seed solution the corresponding family of composite solutions. Composite solutions turn out, in general, to possess interesting features that do not exist in the seed solution. Using symmetry reductions, we show that the method applies also to systems of N-coupled nonlinear Schrödinger equations. Specific examples for the three-coupled nonlinear Schrödinger equation are given.  相似文献   

5.
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is nonlinear wave theory, but not in atmospheric presented and geared to readers versed in sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.  相似文献   

6.
In this paper, a class of systems of matrix nonlinear differential equations containing as particular cases the systems of coupled Riccati differential equations arising in connection with control of some linear stochastic systems is considered.The system of differential equations considered in this paper are converted in a suitable nonlinear differential equation on a finite-dimensional Hilbert space adequately choosen.This allows us to use the positivity properties of the linear evolution operator defined by the linear differential equations of Lyapunov type.Our aim is to investigate properties of stabilizing and bounded solutions of the considered differential equations and to obtain some conditions ensuring the existence of such solutions.Conditions providing the existence of a maximal solution (minimal solution respectively) with respect to some classes of global solutions are presented. It is shown that if the coefficients of the equations are periodic functions all these special solutions (stabilizing, maximal, minimal) are periodic functions, too.Whenever possible the probabilistic arguments were avoided and so the results proved in the paper appear as results in the field of differential equations with interest in themselves.  相似文献   

7.
A set of two coupled nonlinear diffusion reaction equations is studied and the existence of secondary bifurcation is shown. Using the method of two-timing, it is found that diffusion reaction equations of this type can exhibit an exchange of stability between distinct nontrivial solutions. This exchange can provide either a smooth or discontinuous transition between stable solutions, and the nontrivial solutions can be either steady or temporally periodic. This analysis is applied to the model biochemical reaction of Prigogine and the types of secondary bifurcation which occur in this model are classified.  相似文献   

8.
In this paper, we consider a system of coupled quasilinear viscoelastic equations with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.  相似文献   

9.
In this paper, we will establish the bounded solutions, periodic solutions, quasiperiodic solutions, almost periodic solutions, and almost automorphic solutions for linearly coupled complex cubic‐quintic Ginzburg‐Landau equations, under suitable conditions. The main difficulty is the nonlinear terms in the equations that are not Lipschitz‐continuity, traditional methods cannot deal with the difficulty in our problem. We overcome this difficulty by the Galerkin approach, energy estimate method, and refined inequality technique.  相似文献   

10.
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.  相似文献   

11.
In this paper, we introduce a spectral collocation method based on Lagrange polynomials for spatial derivatives to obtain numerical solutions for some coupled nonlinear evolution equations. The problem is reduced to a system of ordinary differential equations that are solved by the fourth order Runge–Kutta method. Numerical results of coupled Korteweg–de Vries (KdV) equations, coupled modified KdV equations, coupled KdV system and Boussinesq system are obtained. The present results are in good agreement with the exact solutions. Moreover, the method can be applied to a wide class of coupled nonlinear evolution equations.  相似文献   

12.
We consider a system of weakly coupled KdV equations developed initially by Gear & Grimshaw to model interactions between long waves. We prove the existence of a variety of solitary wave solutions, some of which are not constrained minimizers. We show that such solutions are always linearly unstable. Moreover, the nature of the instability may be oscillatory and as such provides a rigorous justification for the numerically observed phenomenon of “leapfrogging.”  相似文献   

13.
长水波近似方程组的新精确解   总被引:3,自引:0,他引:3  
依据齐次平衡法的思想 ,首先提出了求非线性发展方程精确解的新思路 ,这种方法通过改变待定函数的次序 ,优势是使求解的复杂计算得到简化 .应用本文的思路 ,可得到某些非线性偏微分方程的新解 .其次我们给出了长水波近似方程组的一些新精确解 ,其中包括椭圆周期解 ,我们推广了有关长波近似方程的已有结果 .  相似文献   

14.
We study a fractional reaction–diffusion system with two types of variables: activator and inhibitor. The interactions between components are modeled by cubical nonlinearity. Linearization of the system around the homogeneous state provides information about the stability of the solutions which is quite different from linear stability analysis of the regular system with integer derivatives. It is shown that by combining the fractional derivatives index with the ratio of characteristic times, it is possible to find the marginal value of the index where the oscillatory instability arises. The increase of the value of fractional derivative index leads to the time periodic solutions. The domains of existing periodic solutions for different parameters of the problem are obtained. A computer simulation of the corresponding nonlinear fractional ordinary differential equations is presented. For the fractional reaction–diffusion systems it is established that there exists a set of stable spatio-temporal structures of the one-dimensional system under the Neumann and periodic boundary conditions. The characteristic features of these solutions consist of the transformation of the steady-state dissipative structures to homogeneous oscillations or space temporary structures at a certain value of fractional index and the ratio of characteristic times of system.  相似文献   

15.
Motivated by the study of matter waves in Bose–Einstein condensates and coupled nonlinear optical systems, we study a system of two coupled nonlinear Schrödinger equations with inhomogeneous parameters, including a linear coupling. For that system, we prove the existence of two different kinds of homoclinic solutions to the origin describing solitary waves of physical relevance. We use a Krasnoselskii fixed point theorem together with a suitable compactness criterion.  相似文献   

16.
We study the linear stability of traveling wave solutions for the nonlinear wave equation and coupled nonlinear wave equations. It is shown that periodic waves of the dnoidal type are spectrally unstable with respect to co-periodic perturbations. Our arguments rely on a careful spectral analysis of various self-adjoint operators, both scalar and matrix and on instability index count theory for Hamiltonian systems.  相似文献   

17.
We consider a lower-order approximation for a third-order diffusive–dispersive conservation law with nonlinear flux. It consists of a system of two second-order parabolic equations; a coupling parameter is also added. If the flux has an inflection point it is well-known, on the one hand, that the diffusive–dispersive law admits traveling-wave solutions whose end states are also connected by undercompressive shock waves of the underlying hyperbolic conservation law. On the other hand, if the diffusive–dispersive regularization vanishes, the solutions of the corresponding initial-value problem converge to a weak solution of the hyperbolic conservation law. We show that both of these properties also hold for the lower-order approximation. Furthermore, when the coupling parameter tends to infinity, we prove that solutions of initial value problems for the approximation converge to a weak solution of the diffusive–dispersive law. The proofs rely on new a priori energy estimates for higher-order derivatives and the technique of compensated compactness.  相似文献   

18.
本文考虑了一个带有非线性阻尼项的粘弹性方程组.通过使用扰动能量的方法,我们得到了整体解的能量泛函依据松弛函数的衰减速率按指数衰减或者多项式衰减.  相似文献   

19.
The interaction of weakly nonlinear, long internal gravity waves in neighboring pycnoclines is studied. Two coupled equations which describe the evolution of the wave amplitudes are derived. These equations are shown to possess three conserved quantities. The numerical results demonstrate the existence of two types of periodic nonlinear wave solutions when mode-two waves propagate along each pycnocline with nearly equal speeds. The energy transfer between these resonant waves is discussed for two pycnocline separations.  相似文献   

20.
郭峰 《计算数学》2018,40(3):313-324
本文利用平均值离散梯度给出了一个构造哈密尔顿偏微分方程的局部能量守恒格式的系统方法.并用非线性耦合Schrdinger-KdV方程组加以说明.证明了格式满足离散的局部能量守恒律,在周期边界条件下,格式也保持离散整体能量及系统的其它两个不变量.最后数值实验验证了理论结果的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号