首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gemini surfactants: new synthetic vectors for gene transfection   总被引:5,自引:0,他引:5  
The superior surfactant properties of cationic gemini surfactants are applied to the complex problem of introducing genes into cells. Of almost 250 new compounds tested, of some 20 different structural types, a majority showed very good transfection activity in vitro. The surfactant is shown to bind and compact DNA efficiently, and structural studies and calculations provide a working picture of the "lipoplex" formed. The lipoplex can penetrate the outer membranes of many cell types, to appear in the cytoplasm encapsulated within endosomes. Escape from the endosome--a key step for transfection--may be controlled by changes in the aggregation behavior of the lipoplex as the pH falls. The evidence suggests that DNA may be released from the lipoplex before entry into the nucleus, where the new gene can be expressed with high efficiency.  相似文献   

2.
Linear fatty alcohols on reaction with chloro/bromo acetic acid in the presence of catalytic amount of p-toluene sulphonic acid monohydrate under solvent-free conditions are converted into alkyl-2-haloacetate which on reaction with N-methyl pyrrolidine gives ester-functionalized pyrrolidinium surfactants. Thus, new series of ester-functionalized heterocyclic pyrrolidinium head group containing cationic surfactants have been synthesized by green approach via energy saving and cost effective methodology. These new surfactants have been investigated for their surface properties by surface tension, conductivity, and fluorescence method. Surface properties of these surfactants have been found to be far better compared to conventional heterocyclic cationic surfactants having similar hydrophobic alkyl chain length.  相似文献   

3.
The interaction of a series of dissymmetric gemini surfactants, [C(m)H(2m+1)(CH(3))(2)N(CH(2))(6)N(CH(3))(2)C(n)H(2n+1)]Br(2) (designated as C(m)C(6)C(n)Br(2), with constant m+n=24, and m=12, 14, 16, and 18) with DNA in 10 mM NaCl solution has been investigated by isothermal titration microcalorimetry (ITC). The curves for titration of the surfactants into DNA solution show noticeable differences from those into 10 mM NaCl solution without DNA. It is attributed to the interaction between DNA and surfactants. The critical aggregation concentration (CAC), the saturation concentration (C(2)), and the thermodynamic parameters for the aggregation and interaction processes were obtained from the calorimetric titration curves. The results show that the dissymmetry degree (m/n) has a marked effect on the interaction of the C(m)C(6)C(n)Br(2) surfactants with DNA. The CAC and C(2) tend to become smaller with increased m/n. The enthalpy change (DeltaH(agg)) and the Gibbs free energy change (DeltaG(agg)) for aggregation become more negative down the series, indicating that the hydrophobic interaction between the hydrophobic chains of the surfactant molecules increases and the aggregation process is more spontaneous with increased m/n. The entropy changes of aggregation (DeltaS(agg)) are all positive and TDeltaS(agg) is much larger than |DeltaH(agg)|, revealing that the aggregation process is mainly entropy-driven. However, the calculated Gibbs free energy (DeltaG(DS)) for the interaction between the gemini surfactants and DNA becomes less negative with increased m/n, which reveals that the interaction between the gemini surfactants and DNA tends to be weaker with increased m/n. This is induced by the disruption of the chain-chain hydrophobic interaction between the surfactant molecules at higher m/n, where the entropy change DeltaS(DS) for the interaction process tends to be an unfavorable factor. In addition, the DNA concentration also has a remarkable influence on the interaction.  相似文献   

4.
A series of dissymmetric gemini imidazolium surfactants with different spacer length ([CmCsCnim]Br2, m + n = 24, m = 12, 14, 16, 18; s = 2, 4, 6) were synthesized and characterized by 1H NMR and ESI-MS spectroscopy. Their adsorption and thermodynamic properties were investigated by the surface tension and electrical conductivity methods. Consequently, the surface activity parameters (cmc, γcmc, πcmc, pC20, cmc/C20, Γmax, Amin) and thermodynamic parameters (ΔGmθ, ΔHmθ, ΔSmθ) were obtained. The effects of the dissymmetry (m/n) and the spacer length (s) on the surface activity and micellization process of surfactants have been discussed in detail.  相似文献   

5.
A series of block copolymers containing a dendronised cationic block for efficient DNA binding and a poly(ethylene glycol) block for encapsulation of the complex were synthesised in a modular fashion using a combination of click chemistry and ring-opening metathesis polymerisation. DNA binding experiments, investigated using gel electrophoresis, dynamic light scattering and transmission electron microscopy, showed that all polymers prepared in this study strongly complex DNA and self-assemble into polyion complex micelles with apparent hydrodynamic radii ranging from 20-120 nm at physiological pH (7.4). The in vitro transfection efficiency and toxicity of these potential non-viral vectors were also evaluated in HeLadouble dagger cells using plasmid DNA encoding for green fluorescent protein as the reporter gene.  相似文献   

6.
Dodecanoyl amidoalkylguanidine hydrochlorides (C(12)A(m)G, m = 2, 3, 4, 6) are cationic surfactants that have an amidoalkyl group (A(m)) as spacer between the cationic guanidine and hydrophobic groups in the molecule. The effect of the A(m) group on the aggregation properties of the surfactants was evaluated through measurements of their critical micelle concentration (cmc) value, Krafft point, phase behavior, area occupied by one molecule at the air/water interface, and micellar aggregation number. Dodecylguanidine hydrochloride (C(12)A(0)G) with no A(m) group is a unique cationic surfactant because it exhibits a strong tendency for self-assembly when compared with common ionic surfactants, due to the hydrogen bonding between its guanidine groups in addition to the hydrophobic interaction between its alkyl chains [M. Miyake, K. Yamada, N. Oyama, Langmuir 24 (2008) 8527-8532]. In contrast, C(12)A(m)G showed a decreasing tendency for self-assembly with increasing alkyl chain length, m, of the A(m) group up to m = 3, above which the tendency increased. Such changes in aggregation tendency of the surfactants were suggested to arise from an increased bulkiness of the hydrophilic part caused by the A(m) group, resulting in a decrease in the hydrogen bonding between the guanidine groups and an increase in micellization through the cooperative hydrophobic interaction between the hydrophilic groups. From the balance of these effects, the area of the hydrophilic part of C(12)A(4)G was the largest and the hydrogen bonding between the guanidine groups in C(12)A(4)G was weakened. It is suggested in guanidine-type surfactant that A(4) gave a similar aggregation tendency to traditional ionic surfactants and a weak effect for skin.  相似文献   

7.
Amphiphilic dendrimer-based gene delivery vectors bearing peripheral alkyl sulfonyl hydrophobic tails were constructed using low-generation PAMAM-G2 as the core and functionalized by means of the aza-Michael type addition of its primary amino groups to vinylsulfone derivatives as an efficient tool for surface engineering. While the unmodified PAMAM-G2 was unable to efficiently transfect eukaryotic cells, functionalized PAMAM-G2 dendrimers were able to bind DNA at low N/P ratios, protect DNA from digestion with DNase I and showed high transfection efficiencies and low cytotoxicity. Dendrimers with a C18 alkyl chain produced transfection efficiencies up to 3.1 fold higher than LipofectAMINE? 2000 in CHO-k1 cells. The dendriplexes based in functionalized PAMAM-G2 also showed the ability to retain their transfection properties in the presence of serum and the ability to transfect different eukaryotic cell lines such as Neuro-2A and RAW 264.7. Taking advantage of the vinylsulfone chemistry, fluorescent PAMAM-G2 derivatives of these vectors were prepared as molecular probes to determine cellular uptake and internalization through a clathrin-independent mechanism.  相似文献   

8.
Sugar-based gemini surfactants (GSs) display rich pH-dependent phase diagrams and are considered to be promising candidates as gene- and drug-delivery vehicles for biomedical applications. Several sugar-based GSs form vesicles around neutral pH. The vesicular dispersions undergo transitions toward wormlike micelles and spherical micelles at acidic pH, whereas flocculation followed by redispersion upon charge reversal is observed at basic pH. The influence of various amounts of the double-tailed phospholipids DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and of the single-tailed surfactants lyso-PC (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine) and OTAC (octadecyltrimethylammonium chloride) on the phase behavior of GS1 (1,8-bis(N-octadec-9-yl-1-deoxy-D-glucitol-1-ylamino)3,6-dioxaoctane) was determined as a function of pH, in water and in water at physiological ionic strength. The pH corresponding to the phase transitions and the characteristics of the aggregates were determined by means of a combination of physical techniques: static and dynamic light scattering (SLS and DLS), fluorescence spectroscopy, cryo-TEM and diffusion- and (31)P NMR. The results show that the additives affect the phase behavior of the GS1 dispersions in a pH-dependent fashion. In the presence of double-tailed phospholipids, a higher degree of protonation of GS1 must be reached to observe micelle formation, whereas single-tailed surfactants affect these transitions only slightly. In the presence of increasing amounts of lyso-PC, the pH range of flocculation becomes more narrow, indicating the increased hydration of the vesicles. The pH of redispersion after charge reversal is particularly sensitive to the presence of positively charged additives. It is suggested that the cationic headgroups disturb the hydrogen-bond structure of water at the vesicular surface, hampering OH(-) binding. The effect of an increase in ionic strength to physiological values is found to be modest, except for the dispersions containing the positively charged additives.  相似文献   

9.
Synthesis and properties of cationic oligomeric surfactants   总被引:8,自引:0,他引:8  
Three series of new oligomeric cationic surfactants were synthesized. These amphiphiles are trimeric and tetrameric oligomeric quaternary ammonium chlorides, with spacer groups of different lengths separating the individual surfactant fragments. The properties of the compounds, such as Krafft temperatures, surface activity, micellization, viscosifying effects, foaming and solubilizing capacity, are studied. The influence of the degree of oligomerization and of the spacer group on the surfactant properties is discussed, in comparison with the analogous standard monomeric and dimeric ("gemini") surfactants. Typically, the evolution of the properties observed from standard to dimeric surfactants progresses with the trimers and tetramers, resulting for instance in extremely low critical micellization concentrations.  相似文献   

10.
The synthesis and associated structure-activity relationships for gene transfection of a series of spermine-derived cationic gemini surfactants incorporating diamino acid headgroups and either identical (symmetrical) or different (unsymmetrical) lipophilic tailgroups is described. Transfection activity is found to depend critically upon the structural elements present.  相似文献   

11.
以N,N'-二甲基乙二胺为起始原料,合成了一类新型磺化甜菜碱型双子表面活性剂.通过红外光谱(IR)、核磁共振(~1H-NMR)对中间体及最终产物——磺化甜菜碱型两性离子双子表面活性剂的分子结构进行了表征.对合成产物的表面性能及相关物性参数作了初步的研究.实验表明:合成制得的磺化甜菜碱型双子表面活性剂具有优异的表面活性,最低的表面张力可降至27.81 mN/m,且有着良好的乳化性能.  相似文献   

12.
Improving the efficiency of gene delivery by using non-viral vectors is currently an area of considerable research interest. Novel derivatives of gemini surfactants having aza- (12-5N-12, 12-7N-12, 12-8N-12) and imino- (12-7NH-12) substituted spacer groups and C12 tails have been designed to improve DNA transfection. Physicochemical characterization of micelle and interfacial properties of these cationic compounds are reported. The effect of these substitutions on the aggregation properties of the gemini surfactants is discussed in the context of results for the 12-s-12 and 12-EOx-12 gemini series, previously reported in the literature. Aza substitution results in a spacer of intermediate hydrophobicity to the above series, reflected by the magnitude of both the critical micelle concentrations and head group areas. Enthalpy and apparent molar volume of micellization data illustrate the differences in the aggregation properties that result from the bulkier and more hydrophobic aza-substituent in the spacer as compared to an ether oxygen (for the 12-EOx-12 series) containing spacer. The 12-7N-12 and 12-8N-12 compounds show aberrant features in the surface tension and enthalpy of dilution results that are not observed for the 12-5N-12 and 12-7NH-12 compounds. Premicelle association is considered to be a source of this behaviour.  相似文献   

13.
Low molecular weight chitosans (5 kDa) hydrophobically modified with 3, 10, and 18 mol % of tetradecenoyl (TDC) groups have been synthesized. Their good solubility at neutral pH, their surface activity and micelle-forming properties as well as their ability to interact with negatively charged phospholipid vesicles mimicking the internal layer of cell plasma membranes, allow us to consider them as potential non-viral transfection vectors for gene therapy.  相似文献   

14.
15.
Novel star-shaped trimeric surfactants consisting of three quaternary ammonium surfactants linked to a tris(2-aminoethyl)amine core were synthesized. Each ammonium had two methyls and a straight alkyl chain of 8, 10, 12, or 14 carbons. The adsorption and aggregation properties of these tris(N-alkyl-N,N-dimethyl-2-ammoniumethyl)amine bromides (3C(n)trisQ, in which n represents alkyl chain carbon number) were characterized by equilibrium and dynamic surface tension, rheology, small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryo-TEM) techniques. 3C(n)trisQ showed critical micelle concentrations (CMC) 1 order of magnitude lower than that of the corresponding gemini surfactants with an ethylene spacer and the corresponding monomeric surfactants. The logarithm of the CMC decreased linearly with increasing hydrocarbon chain length for 3C(n)trisQ. The slope of the line, which is well-known as Klevens equation, was larger than those of the monomeric and gemini surfactants; however, considering the total carbon number in the chains, the slope was shallower than the monomeric and was close to the gemini. Through the results such as surface tensions at the CMC (32-34 mN m(-1)) and the parameters of standard free energy, CMC/C(20) and pC(20), it was found that 3C(n)trisQ could adsorb densely at the air/water interface despite the strong electrostatic repulsion between multiple quaternary ammonium headgroups. Moreover, dynamic surface tension measurements showed that the kinetics of adsorption for 3C(n)trisQ to the air/water interface was slow because of their bulky structures. Furthermore, the results of rheology, SANS, and cryo-TEM determined that 3C(n)trisQ with n = 10 and 12 formed ellipsoidal micelles at low concentrations in solution and the structures transformed to threadlike micelles with very few branches for n = 12 as the concentration increased, but for n = 14 threadlike micelles formed at relatively low concentrations.  相似文献   

16.
磷酸酯甜菜碱两性表面活性剂的合成与性能   总被引:7,自引:1,他引:7  
磷酸酯甜菜碱从皮肤溶出的氨基酸量少,脱脂低,毒性和刺激性低,易降解,是一类性能优良两性表面活性剂[1,2]。它的合成大多以长链卤烷或胺为原料,成本较高。本文以高级脂肪醇、氯乙醇以及二甲胺为原料、P2O5为磷酸化剂,合成了C12H25OCH2CH(OOCCH3)CH2N+(CH3)2CH2CH2OP(O)(O )(OH)磷酸酯甜菜碱。测定了表面张力、泡沫性能、钙皂分散力及增溶能力。1 合成十二烷基缩水甘油醚(Ⅰ)[2] 在500ml三颈烧瓶中加入月桂醇0 2mol,正已烷200ml和四丁基溴化铵0 01mol;在室温和强烈搅拌下加入50%的NaOH水溶液48g,滴加环氧氯丙烷0 4mol后升…  相似文献   

17.
Gemini-type hybrid surfactants with two fluorocarbon chains connected through a hydrocarbon spacer, F(CF2)m(CH2)2CH(OSO3Na)(CH2)nCH(OSO3Na)(CH2)2(CF2)mF [Fm(Hn)FmOS, m = 4, 6; n = 5, 6, 7, 8)], were synthesized and their surface chemical properties were examined with the aim to have highly functional and highly water-soluble fluorinated surfactants when compared with the conventional fluorinated surfactants. Comparisons of the surface chemical properties of the synthesized gemini-type hybrid surfactants with those of monounit-type hybrid surfactants, F(CF2)m(CH2)2CH(OSO3Na)(CH2)nH [FmEHnOS, m = 4, 6; n = 3, 5)], revealed that gemination causes a remarkable lowering (about 1/100) in cmc value while it produces little changes in Krafft point (below 0 °C) and surface tension at cmc (γcmc).  相似文献   

18.
The micellization process of a series of dissymmetric cationic gemini surfactants [CmH2m+1(CH3)2N(CH2)6N(CH3)2C6H13]Br2 (designated as m-6-6 with m = 12, 14, and 16) and their interaction with dimyristoylphosphatidylcholine (DMPC) vesicles have been investigated. In the micellization process of these gemini surfactants themselves, critical micelle concentration (cmc), micelle ionization degree, and enthalpies of micellization (DeltaHmic) were determined, from which Gibbs free energies of micellization (DeltaGmic) and entropy of micellization (DeltaSmic) were derived. These properties were found to be influenced significantly by the dissymmetry in the surfactant structures. The phase diagrams for the solubilization of DMPC vesicles by the gemini surfactants were constructed from calorimetric results combining with the results of turbidity and dynamic light scattering. The effective surfactant to lipid ratios in the mixed aggregates at saturation (Resat) and solubilization (Resol) were derived. For the solubilization of DMPC vesicles, symmetric 12-6-12 is more effective than corresponding single-chain surfactant DTAB, whereas the dissymmetric m-6-6 series are more effective than symmetric 12-6-12, and 16-6-6 is the most effective. The chain length mismatch between DMPC and the gemini surfactants may be responsible for the different Re values. The transfer enthalpy per mole of surfactant within the coexistence range may be associated with the total hydrophobicity of the alkyl chains of gemini surfactants. The transfer enthalpies of surfactant from micelles to bilayers are always endothermic due to the dehydration of headgroups and the disordering of lipid acyl chain packing during the vesicle solubilization.  相似文献   

19.
The phase and miscibility behavior of a triple-chain phosphatidylcholine (TPHPC) and a single-chain surfactant (CTAB) were investigated in aqueous dispersions and in monolayers at the air/water interface. CTAB can be incorporated in the TPHPC monolayer because of its complementary molecule shape and reduces the tilt angle of TPHPC. The type of phases and the phase sequence (L2 - LS) are the same in the pure TPHPC monolayer and in the TPHPC/CTAB (80:20 mol:mol) mixture. No indication of any ordering of adsorbed DNA was observed. In the aqueous dispersions, TPHPC exhibits an inverted hexagonal phase above the chain melting. The addition of 30 mol% CTAB leads to the appearance of a lamellar Lalpha phase. The binding of DNA to the mixture is obvious but this is accompanied by a separation of the two lipids what is supported by monolayer experiments. The system has no long-term stability. The main reason seems to be not only the stronger interaction of DNA with CTAB, but also especially the unexpected weak interaction between CTAB and TPHPC. The transfection efficiency is lower compared with lipofectamine. The main disadvantage of this system is the cytotoxicity of CTAB, which could not be lowered by incorporation of CTAB in the TPHPC bilayer.  相似文献   

20.
[reaction: see text] In this work, we report the synthesis of a new series of glucocationic surfactants, a class of surfactants we introduced very recently. The preparation of the surfactants is based on the synthesis of the 2-bromoethyl-2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside, whose preparation was studied in order to improve yields and stereoselectivity of this key intermediate. These glucocationic amphiphiles were prepared and studied as a model of cationic surfactants marked with a carbohydrate moiety. The use of carbohydrates as markers on cationic lipids was recently introduced to induce recognition by specific receptors, present on the surface of cell membranes. The chemicophysical characterization of these model structures can give more insight on the aggregation behavior. Conductivity and surface tension measurements were performed in order to characterize the compounds from the amphiphilic point of view. The results showed a different effect of the glucosidic moiety on the cmc value with respect to the glucopyridinium cationic surfactants. The surfactants also showed the tendency to form premicellar aggregates in solution when the hydrophobicity is raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号