首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utilization of surface-active engineered protein nanocages as stabilizers for emulsions provides avenues for the design of new tailor-made functional materials in various fields including food, pharmaceutical, and biotechnology. They can be used to codeliver bioactive molecules of different polarities in a tailored manner to the body, act as a platform for screening cells or enzymes, or function as targeted drug delivery systems. Knowledge on the mechanisms that underlie the protein nanocage-driven stabilization of emulsions and their colloidal structure can have direct implications for the rational design of the new advanced functional colloids.This contribution summarizes the recent progress in protein nanocage-stabilized emulsions. It discusses the advances in the precision bioengineering of protein nanocages for emulsion design, highlights challenges in the characterization of structure and dynamics in these materials, and demonstrates selected applications in the field of functional food materials.  相似文献   

2.
Aggregation in Pickering emulsions   总被引:1,自引:0,他引:1  
For the first time, the particle distribution and aggregation in Pickering emulsions were made visible by transmission X-ray microscopy. Oil/water emulsions were stabilized by heterocoagulates of a clay mineral and magnesium aluminum hydroxide. Stability is optimum when the particles surround the oil droplets and also assemble to form a network extending through the coherent phase. Received: 18 September 1998 Accepted: 28 September 1998  相似文献   

3.
We investigated the structure and stability of dodecane-in-water emulsions stabilised by partially hydrophobised silica particles after dilution of the emulsions in solutions of sodium dodecyl sulfate and sodium chloride. The emulsions were stable to coalescence on dilution in salt solutions, but did cream over time. The rate and extent of creaming gradually decreased as the salt concentration in the diluted emulsion increased. Dilution in low concentrations of the anionic surfactant did not affect the emulsion stability to coalescence or alter the creaming behaviour of the emulsion. At surfactant concentrations above the critical micelle concentration, however, the rate and extent of creaming and flocculation of the drops were enhanced.  相似文献   

4.
Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.  相似文献   

5.
Macroemulsions rendered stable by adsorbed colloidal particles are termed Pickering emulsions. If the volume fraction of dispersed phase exceeds around 0.75, the emulsions are named high internal phase Pickering emulsions abbreviated to HIPPEs, which present new properties and potential applications. We review here the recent progress in preparing and studying HIPPEs of both oil-in-water and water-in-oil types. This includes discussion of the range of solid particle emulsifiers, the choice of the two immiscible liquids and methods for their preparation. As a result of their high interfacial area and long-term stability, HIPPEs are being put to use in many potential applications including drug delivery, catalysis, and in the production of novel porous materials.  相似文献   

6.
In this paper, effect of emulsification processes on the properties of Pickering emulsions stabilized by organomontmorillonites (OMts) was studied. Results of micro-morphology and X-ray diffraction showed that the structure of OMt in emulsion depended on the emulsification processes and had an effect on the stability of emulsion. We propose a schematic diagram to reveal the relationship between emulsification processes-OMt laminates structure-stability of Pickering emulsion. In emulsion prepared by ultrasonic, OMt showed uniform dispersion, loose structure, and irregular crystalline. In emulsion prepared by vortex mixing method, OMt illustrated stacking and coagulation structure. In emulsion prepared by microwave method, OMt showed interacting structure and had a little interaction with oil/water interface, and thus the properties of emulsion prepared by microwave was weakly related to oil/water ratios. Emulsification processes had a profound effect on the structure of OMt and stability of Pickering emulsion, which can be used as a trigger to prepare emulsion for various applications.  相似文献   

7.
The assembly of sterically stabilized colloids at liquid-liquid interfaces is studied with the self-consistent field (SCF) theory using the discretization scheme that was developed by Scheutjens, Fleer, and co-workers. The model is based on a poly(methyl methacrylate) (pMMA) particle with poly(isobutylene) (pIB) grafted to the surface. The stabilizing groups on the particle surface have a significant effect on the interfacial assembly and, therefore, also on the formation and properties of Pickering emulsions. The wetting behavior of the particle is altered by the presence of the stabilizing groups, which affects the equilibrium position of the particles at the interface. The stabilizing groups can also lead to an activation barrier before interfacial adsorption, analogous to the steric repulsion between two particles. These effects are numerically solved with the SCF theory. It is commonly known that flocculating conditions enhance the interfacial adsorption and yield stable Pickering emulsions, which is confirmed in this work. Additionally, it is concluded that those conditions are not an absolute requirement. There is a window of stabilizer concentrations Γ(pIB), 2.2-3.3 mg/m(2) pIB, that shows both partial wetting and colloidal stability. The activation barrier for interfacial assembly is 140-550 k(B)T and is an order of magnitude higher than the colloidal stability. The difference can be attributed to the unfavorable interaction of pIB with water and a difference in geometry (plate-sphere vs sphere-sphere). This study demonstrates the interplay and provides a quantitative comparison between the wetting behavior and the colloidal stability, and it gives a better understanding of the colloidal assembly at soft interfaces and formation of Pickering emulsions in general.  相似文献   

8.
9.

Abstract  

Oil-in-water emulsions can be stabilized by solid particles. These so-called Pickering emulsions are regularly used in many technological applications. Here we describe the efficiency of sol–gel-synthesized anatase nanoparticles with a diameter of 6 nm in stabilizing emulsions. Key parameters were the surface charge of the particles—depending on pH and salt concentration—and their contact angle—depending on the surface groups and the polarity of the oil phase. The effect of these properties on the stability of the emulsions was investigated. The sol–gel nanoparticles were most efficient in stabilizing emulsions at pH 3 (depending on the salt and particle concentration). Highly apolar oil phases (cyclohexane, n-hexane) were required to obtain stable emulsions with the investigated system and addition of salt or hydrophobic coupling molecules in the oil phase, such as long alkyl chain containing phosphonates, increased the stability of the emulsions.  相似文献   

10.
Amphiphilic gold nanoparticles are demonstrated to effectively stabilize emulsions of hexadecane in water. Nanoparticle surfactants are synthesized using a simple and scalable one-pot method that involves the sequential functionalization of particle surfaces with thiol-terminated polyethylene glycol (PEG) chains and short alkane-thiol molecules. The resulting nanoparticles are shown to be highly effective emulsifying agents due to their strong adsorption at oil-water and air-water interfaces. The original nonfunctionalized gold nanoparticles are unable to effectively stabilize oil-water emulsions due to their small size and low adsorption energy. Small-angle X-ray scattering and electron microscopy are used to demonstrate the formation of nanoparticle-stabilized colloidosomes that are stable against coalescence and show significant shifts in plasmon resonance enhancing the near-infrared optical absorption.  相似文献   

11.
We describe a simple method to prepare high-efficiency ultrashort nanotube Pickering emulsifiers. The polydivinylbenzene (PDVB) nanotubes with a slight degree of sulfonation, then interrupted to several microns in length, can stabilize hundred times their own mass of oil or water phase and form different Pickering emulsion types. The emulsion is very stable and can be stored for more than half a year without demulsification. A layer of magnetic Fe3O4 nanoparticles can be grown on the surface of the ultrashort sulfonated PDVB nanotubes. After being emulsified, oil-phase and magnetic nanotubes can be collected using a magnet, which have huge potential application for separation and recovery of organic solvents in environmental protection.  相似文献   

12.
Thermodynamic treatment of thin liquid films in Part III of this series was applied to foam films stabilized by sodium dodecyl sulfate. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed films at the film surfaces and transition between the black films were studied by measuring film thickness and contact angle. A discontinuous change in the thickness and a break on the contact angle vs. concentration curve appeared at the transition. Judging from the phase diagram of adsorption, sodium chloride and sodium dodecyl sulfate are a little miscible in the adsorbed films. The miscibility was ascribed to specific interaction between sodium ion and dodecyl sulfate ion in the adsorbed films. The miscibility in an adsorbed film was compared between the film surface and meniscus and between the common black and Newton black films.  相似文献   

13.
The pace of development of edible Pickering emulsions has recently soared, as interest in their potential for texture modification, calorie reduction and bioactive compound encapsulation and delivery has risen. In the broadest sense, Pickering emulsions are defined as those stabilized by interfacially-adsorbed solid particles that retard and ideally prevent emulsion coalescence and phase separation. Numerous fat-based species have been explored for their propensity to stabilize edible emulsions, including triglyceride and surfactant-based crystals and solid lipid nanoparticles. This review explores three classes of fat-based Pickering stabilizers, and proposes a microstructure-based nomenclature to delineate them: Type I (surfactant-mediated interfacial crystallization), Type II (interfacially-adsorbed nano- or microparticles) and Type III (shear-crystallized droplet encapsulation matrices). Far from simply reporting the latest findings on these modes of stabilization, challenges associated with these are also highlighted. Finally, though emphasis is placed on food emulsions, the fundamental precepts herein described are equally applicable to non-food multicomponent emulsion systems.  相似文献   

14.
In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.  相似文献   

15.
We report the self-assembly of a single species or a binary mixture of microparticles in ionic liquid-in-water Pickering emulsions, with emphases on the interfacial self-assembled particle structure and the partitioning preference of free particles in the dispersed and continuous phases. The particles form monolayers at ionic liquid-water interfaces and are close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. In contrast to those at oil-water interfaces, no long-range-ordered colloidal lattices are observed. Interestingly, other than equilibrating at the ionic liquid-water interfaces, the microparticles also exhibit a partitioning preference in the dispersed and continuous phases: the sulfate-treated polystyrene (S-PS) and aldehyde-sulfate-treated polystyrene (AS-PS) microparticles are extracted to the ionic liquid phase with a high extraction efficiency, whereas the amine-treated polystyrene (A-PS) microparticles remain in the water phase.  相似文献   

16.
We have studied polydimethylsiloxane (PDMS)-in-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) Pickering emulsions stabilized by polystyrene microparticles with different surface chemistry. Surprisingly, in contrast to the consensus originating from oil/water Pickering emulsions in which the solid particles equilibrate at the oil-water droplet interfaces and provide effective stabilization, here the polystyrene microparticles treated with sulfate, aldehyde sulfate, or carboxylate dissociable groups mostly formed monolayer bridges among the oil droplets rather than residing at the oil-ionic liquid interfaces. The bridge formation inhibited individual droplet-droplet coalescence; however, due to low density and large volume (thus the buoyant effect), the aggregated oil droplets actually promoted oil/ionic liquid phase separation and distressed emulsion stability. Systems with binary heterogeneous polystyrene microparticles exhibited similar, even enhanced (in terms of surface chemistry dependence), bridging phenomenon in the PDMS-in-[BMIM][PF(6)] Pickering emulsions.  相似文献   

17.
We studied oil in water Pickering emulsions stabilized by cellulose nanocrystals obtained by hydrochloric acid hydrolysis of bacterial cellulose. The resulting solid particles, called bacterial cellulose nanocrystals (BCNs), present an elongated shape and low surface charge density, forming a colloidal suspension in water. The BCNs produced proved to stabilize the hexadecane/water interface, promoting monodispersed oil in water droplets around 4 μm in diameter stable for several months. We characterized the emulsion and visualized the particles at the surface of the droplets by scanning electron microscopy (SEM) and calculated the droplet coverage by varying the BCN concentration in the aqueous phase. A 60% coverage limit has been defined, above which very stable, deformable droplets are obtained. The high stability of the more covered droplets was attributed to the particle irreversible adsorption associated with the formation of a 2D network. Due to the sustainability and low environmental impact of cellulose, the BCN based emulsions open opportunities for the development of environmentally friendly new materials.  相似文献   

18.
We study oil-in-water emulsions stabilised by pH-sensitive colloidal silica or latex particles. Depending on the composition of the continuous phase, the same type of particles and the same emulsification process lead to emulsions characterised either by large drops densely covered by the particles, or to small droplets which are weakly covered. The two kinetically stable states can be tuned reversibly by using pH or salinity as compositional stimuli. We examine the emulsions' behaviour in these two limiting cases and we discuss the possible mechanisms allowing stabilisation, especially in the case of low surface coverage.  相似文献   

19.
Copper nanoparticles are prepared in aqueous solution by reducing copper ions with hydrazine hydrate in the presence of cetyl trimethylammonium bromide (CTAB) and polyvinylpyrrolydone (PVP) as stabilizers. With only CTAB was used as stabilizer, copper nanoparticles are aggregated and partially oxidized to Cu(2)O. When both PVP and CTAB were used, dispersed copper nanoparticles with 56 nm diameter were obtained. Copper nanoparticles are simply mixed with poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) in aqueous solution to form conducting composite. The effect of copper weight percent and surfactants on the conductivity and stability of the composite has been investigated.  相似文献   

20.
Pickering emulsions, stabilised by organic or inorganic particles, offer long-term dispersibility of liquid droplets and resistance to coalescence. The versatility of stabilising particles and their ability to encapsulate and release cargo with high internal payload capacity makes them attractive in a wide variety of applications, ranging from catalysis to the cosmetic and food industry. While these properties make them an equally promising material platform for pharmaceutical and clinical applications, the development of Pickering emulsions for healthcare is still in its infancy. Herein, we summarise and discuss recent progress in the development of Pickering emulsions for biomedical applications, probing their design for passive diffusion-based release as well as stimuli-responsive destabilisation. We further comment on challenges and future directions of this exciting and rapidly expanding area of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号