首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new method for characterizing the non-linear behavior of complex fluids at both small and large deformations. For creep measurements, we use the coupling between the instrumental inertia and the material‘s elasticity to follow the rheological behavior of a solution of iota carrageenan both above and below the yield stress. It is shown that this coupling selectively excites one particular frequency of the relaxation spectrum. An analytical calculation is used to quantify the non-linear behavior near the yield stress. The “free“ oscillations observed during the first few seconds allow us to choose the most appropriate mechanical model. Comparison with experiment shows that even above the yield stress, a linear model can still give independently reliable information about the changes in each element of the mechanical model. A comparison of free and forced oscillations in controlled stress rheometry shows both experimentally and theoretically the conditions under which the use of free oscillations is advantageous. Received: 4 September1997 Accepted: 13 January 1998  相似文献   

2.
In engineering practice, most mechanical and structural systems are modelled as multi-degree-of-freedom (MDOF) systems such as, e.g., the periodic structures. When some components within the systems have non-linear characteristics, the whole system will behave non-linearly. The concept of non-linear output frequency response functions (NOFRFs) was proposed by the authors recently and provides a simple way to investigate non-linear systems in the frequency domain. The present study is concerned with investigating the inherent relationships between the NOFRFs for any two masses of non-linear MDOF systems with multiple non-linear components. The results reveal very important properties of the non-linear systems. These properties clearly indicate how the system linear characteristic parameters govern the propagation of the non-linear effect induced by non-linear components in the system. One potential application of the results is to detect and locate faults in engineering structures which make the structures behave non-linearly.  相似文献   

3.
Three cases are examined where the statistical linearization (SL) procedure can yield multiple solutions for the first and second moments of the response. The first is an oscillator with a hardening non-linear stiffness excited by a narrow-band random excitation, the second is an oscillator with two potential wells excited by wide-band random excitation, and the third is an oscillator where the non-linear features present in the first two problems are combined. The results of an SL analysis are quantitatively compared with the behaviour of digitally simulated sample functions of the displacement response. In all cases a definite correspondence is found between the occurrence of multiple solutions generated by the SL method and the appearance of noticeable jumps in sample functions of the response. In some cases a quantitative agreement exists between the first and second moment values of the multiple solutions and the magnitude of “local” moments of the response.  相似文献   

4.
Based on the non-linear output frequency response functions (NOFRFs), a novel method is developed to detect the position of non-linear components in periodic structures. The detection procedure requires exciting the non-linear systems twice using two sinusoidal inputs separately. The frequencies of the two inputs are different; one frequency is twice as high as the other one. The validity of this method is demonstrated by numerical studies. Since the position of a non-linear component often corresponds to the location of defect in periodic structures, this new method is of great practical significance in fault diagnosis for mechanical and structural systems.  相似文献   

5.
The focus of this work is to develop a technique to obtain numerical solution over a long range of time for non-linear multi-body dynamic systems undergoing large amplitude motion. The system considered is an idealization of an important class of problems characterized by non-linear interaction between continuously distributed mass and stiffness and lumped mass and stiffness. This characteristic results in some distinctive features in the system response and also poses significant challenges in obtaining a solution.

In this paper, equations of motion are developed for large amplitude motion of a beam carrying a moving spring–mass. The equations of motion are solved using a new approach that uses average acceleration method to reduce non-linear ordinary differential equations to non-linear algebraic equations. The resulting non-linear algebraic equations are solved using an iterative method developed in this paper. Dynamics of the system is investigated using a time-frequency analysis technique.  相似文献   


6.
A modified perturbation method for obtaining periodic solutions to a class of non-autonomous non-linear partial differential equations is developed. The classic small divisor is discussed in detail and a general method for its elimination is presented. New terminology is introduced for the purpose of discussing forcing functions that produce in a system a response that is of the same form as a non-linear periodic mode for the same system. Specific examples are examined to verify the results of this work.  相似文献   

7.
Creep and creep recovery, stress relaxation and small- and large-amplitude oscillatory shear experiments have been used to study the steady-state flow behaviour and the transient viscoelastic response of wheat flour dough in shear over large ranges of time, stress and strain. The results are discussed with reference to the limited body of reliable literature data. Dough does display a linear viscoelastic domain. The complex character of its non-linear viscoelastic properties is essentially due to the extremely low shear rate limit of the initial Newtonian plateau and to the onset of time-dependent flow behaviour above a certain strain threshold, which explain qualitatively the discrepancies observed in certain cases on a part of the range of the rheological variables explored, despite global self-consistency of the results. Comparison of gluten and dough linear viscoelastic properties shows that dough cannot be viewed simply as a concentrated suspension of starch granules in the hydrated viscoelastic gluten matrix.Paper presented at the second Annual European Rheology Conference (AERC 2005) held in Grenoble, France on April 21–23, 2005.  相似文献   

8.
Starting from an analysis of the rheological behavior of the complex modulus predicted by the Cole-Cole formalism, a generalized Cole-Cole ansatz is suggested in order to overcome the related difficulties. The corresponding rheological constitutive equation with fractional derivatives belonging to the generalized Cole-Cole respondance is stated and the characteristic material functions of the linear viscoelasticity theory (like the dynamic modulus and compliance, the relaxation and ratardation functions, the spectra, etc.) are derived. Model predictions of these functions will be compared with experimental results from dynamical measurements and creep data on different polymer systems which show cooperative phenomena (polymeric glasses and gelling systems). One can see that the modified ansatz fits the data very well, in spite of its relative simplicity.  相似文献   

9.
Non-linear viscoelastic behavior of fumed silica suspensions   总被引:2,自引:0,他引:2  
Suspensions of fumed silica exhibit a wide range of rheological properties depending on the nature and magnitude of the interparticle forces. In a non-polar fluid, the particles interact through hydrogen bonding and can form a three-dimensional network. The microstructure formation is responsible for the non-linear viscoelastic behavior of fumed silica suspensions, even at very small strain. These non-linear rheological properties have been studied in small amplitude oscillatory experiments as a function of particle size, surface treatment of particles, suspending medium polarity and solids concentration. The non-linear viscoelastic behavior is characterized by a non-sinusoidal waveform of the signal response. For suspensions in a non-polar fluid, both the elastic and the loss moduli are shown to be sensitive to the strain amplitude: the elastic modulus is decreasing with increasing strain whereas the loss moduli is initially increasing with strain. We have chosen to examine the dissipated energy which is clearly related to the breakup of the suspension structure. A comparison of model predictions and the experimental data shows the limitations of these models, recently proposed in the literature to describe the behavior of colloidal suspensions. Received: 9 March 1998 Accepted: 17 November 1998  相似文献   

10.
A new type of trial solution which differs from the usual linear combination of approximating functions is considered. It involves modifying the approximating functions with “form functions;” functions containing undetermined parameters appearing non-linearly, the proper choice of which provide a closer approximation to the large local curvatures which appear in some non-linear problems. In this paper the “form function” approximation is demonstrated for steady-state solutions of the Duffing equation. This equation arises in the problem of non-linear vibration of buckled beams and plates. It is shown that the stability behavior of these steady-state solutions is governed by a Hill equation. It is found that the “form function” approximation gives noticeably better numerical results than, for example, those given by the harmonic balance method. The method also provides additional insight into the non-linear behavior, particularly in the low frequency response region.  相似文献   

11.
The Galerkin method is an approximate method which finds wide application in solving differential and integral equations. But a large amount of computation is needed in order to get a high order approximation by using the method. Applying the FFT technique to form a so-called fast Galerkin method, we can reduce the computation work greatly, when taking trigonometric functions as characteristic functions. Taking the periodic solution of non-linear oscillators as an example, we illustrate the procedure and the efficiency of the method. Moreover, with some modifications we extend the applicability of the method, so that not only periodic solutions with known periods, but also those with unknown periods, as well as subharmonics, combination tones, etc., can be treated with the method. Some techniques are described which can be used to simplify the computation.  相似文献   

12.
A two-stage Tikhonov regularisation procedure has been used to obtain rheological properties for a high internal phase emulsion from gap-dependent steady-state parallel plate shear data. This method is beneficial in that it can convert the steady shear data into rheological property functions. The built-in regularisation parameters of the method are able to keep noise amplification under control. The two-stage method is able to obtain not only the shear stress–shear rate function but also the apparent slip velocity as a function of wall shear stress. The method is such that it obtains the rheological functions over the maximum range of shear rate covered by the data. The results obtained using the new method are compared to those obtained using the vane geometry with good agreement being observed.  相似文献   

13.
The behaviour of a non-linear single degree of freedom system, subjected to a random excitation in the form of Poissonian impulse sequence is investigated. The stochastic linearization technique and the generalized FPK equation are used to obtain a characteristic function and moments of system response probability distribution. A digital simulation method is applied to verify the results obtained.  相似文献   

14.
While Krylov and Bogolyubov used harmonic functions in their averaging method for the approximate solution of weakly non-linear differential equations with oscillatory solution, we apply a similar averaging technique using Jacobi elliptic functions. These functions are also periodic and are exact solutions of strongly non-linear differential equations. The method is used to solve non-linear differential equations with linear and non-linear small dissipative terms and/or with time dependent parameters. It is also shown that quite general dissipative terms can be transformed into time-dependent parameters. As a special example, the Langevin (collisional) equation of motion of electrons in a neutralizing ion background under the influence of a time and space-dependent electric field is presented. The method may also be used for non-linear control theory, dynamic and parametric stabilization of non-linear oscillations in plasma physics, etc.  相似文献   

15.
A general method to obtain approximate solutions for the random response of non-linear systems subjected to both additive and multiplicative Gaussian white noises is presented. Starting from the concept of linearization, the proposed method of “Probabilistic Linearization” (PL) is based on the replacement of the Fokker–Planck equation of the original non-linear system with an equivalent one relative to a linear system subjected to additive excitation only. By means of the general scheme of the weighted residuals, the unknown coefficients of the equivalent system are determined. Assuming a Gaussian probability density function of the response process and by choosing the weighting functions in a suitable way, the equivalence of the proposed method, called “Gaussian Probabilistic Linearization” (GPL), with the “Gaussian Stochastic Linearization” (GSL) applied to the coefficients of the Itô differential rule is evidenced. In addition, the generalization of the proposed method, called “Generalized Gaussian Probabilistic Linearization” (GGPL), is presented. Numerical applications show as, varying the choice of the weighting functions, it is possible to obtain different linearizations, with a variable degree of accuracy. For the two examples considered, different suitable combinations of the weighting functions lead to different equivalent linear systems, all characterized by the exact solution in terms of variance.  相似文献   

16.
The rheological properties of a starch suspension are usually studied through two viscosity measurements-pasting behavior and flow behavior of the resulting starch pastes-performed separately with two different tools and demanding rather high starch concentrations (6–10 wt %). This study focused on the feasibility of using a rheometer fitted with a starch stirrer cell to characterize, in a single experiment, the starch suspension’s behavior during and after pasting, all the while involving only low concentrations (2–4 wt %), more representative of a real-food context. A calibration of the starch stirrer cell in comparison to the coaxial cylinders one was done using model fluids (Newtonian and shear-thinning). A link between torque, rotational speed, and rheological properties was determined through two recalculated conversion factors (shear rate and shear stress). An operating diagram was then set indicating the laminar flow and good sensitivity domain for this cell. The accuracy of those constants to starch suspensions in the concentration range 2–4 wt % was demonstrated. The pasting behaviors of 2 wt % starch suspensions were followed successfully at two selected shear rates (13.5 and 135 s?1). The impact of the level of turbulence on the profiles obtained was stressed, a result that is not limited to low-concentration starch suspensions. Finally, the method developed was used to compare the pasting behaviors of 2 wt % native and modified waxy maize starch suspensions.  相似文献   

17.
The present paper describes an improved version of the elliptic averaging method that provides a highly accurate periodic solution of a non-linear system based on the single-degree-of-freedom Duffing oscillator with a snap-through spring. In the proposed method, the sum of the Jacobian elliptic delta and zeta functions is used as the generating solution of the averaging method. The proposed method can be used to obtain the non-odd-order solution, which includes both even- and odd-order harmonic components. The stability analysis for the approximate solution obtained by the present method is also discussed. The stability of the solution is determined from the characteristic multiplier based on Floquet’s theorem. The proposed method is applied to a fundamental oscillator in a non-linear system. The numerical results demonstrate that the proposed method is very effective for analyzing the periodic solution of half-swing mode for systems based on Duffing oscillators with a snap-through spring.  相似文献   

18.
The common metrics used in linear finite element (FE) model updating using vibration test data are generally functions of relationships based on unidimensional convolution, for example, distances involving natural frequencies, frequency response or impulse response functions, modal shapes, etc. When a structure has local elements or geometry, like joints, bolts, gaps, backlash, etc., these approaches can fail once it could to induce non-linear behavior. Thus, the methods for FE model updating, when considering the existence of localized non-linear parameters, have been receiving much attention in the last years. In this sense, the present paper proposes the use of a strategy through objective functions based on multiples convolutions described by the first order and second order discrete-time Volterra kernels. These kernels are effective metrics for a model updating into large FE model with local non-linearity. In order to improve the non-linear coefficient identification, an orthogonal basis involving Kautz filter is used to expand the kernels, called by Wiener kernel. To exemplify in full details the steps of the updating procedure, an FE model of a three-dimensional portal frame with commons non-linearities is simulated with different excitation forces and used to identify the non-linear parameters. These results allow us to characterize the practical applicability and the drawbacks of the proposed method with suggestions and remarks for further use in industrial structures.  相似文献   

19.
The effect of inertia and rheology parameters on the flow of viscoplastic fluids inside a lid-driven cavity is investigated using a stabilized finite element approximation. The viscoplastic material behavior is described by the model introduced by de Souza Mendes and Dutra [30] – herein called SMD fluid – which is essentially a regularized viscosity function that involves only rheological properties of the material. The incompressible balance equations are coupled with the non-linear SMD model and are approximated by a multi-field Galerkin least-squares method in terms of extra-stress, pressure and velocity. The results obtained confirm the stability features of the multi-field formulation and the appropriateness of the rheological stress regularization introduced by the SMD fluid. The influence of inertia and rheological parameters on the morphology of the material yield surfaces is analyzed and discussed.  相似文献   

20.
The viscoelastic behaviour of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer in aqueous solution forming a face-centred cubic (fcc) micellar phase has been investigated using oscillatory shear rheometry. With increasing strain amplitude, the micellar solution was observed to undergo a transition from linear to non-linear behaviour, characterized by strong shear thinning. The non-linear behaviour observed in the stress response was analyzed by Fourier transformation of the waveform. Fourier analysis revealed that the high harmonic contributions to the shear stress response increased with strain amplitude and up to the 81st harmonic was observed for very large amplitudes. The onset of non-linear response as defined from the dependence of isochronal dynamic shear moduli on strain amplitude was found to be in good agreement with that defined by the appearance of a higher harmonic in the stress waveform. The amplitudes of the harmonic coefficients are compared to the predictions of a model for the nonlinear rheological response of a lyotropic cubic mesophase based on the stress response to a periodic lattice potential (Jones and McLeish 1995). It is found that the model is able to account for qualitative trends in the data such as the development of finite higher harmonics with increasing strain, but it does not describe the full frequency and strain dependence of these coefficients. Received: 31 May 2000 Accepted: 21 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号