首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoretically mediated microanalysis (EMMA), in combination with a partial filling technique and indirect or direct detection, is described for the study of enzymes reacting with the high mobility inorganic or organic anions as substrates or products. Part of the capillary is filled with a buffer optimized for the enzymatic reaction, the rest of the capillary with the background electrolyte being optimal for the separation of substrates and products. With haloalkane dehalogenase, chosen as a model enzyme, the enzymatic reaction was performed in a 20 mM glycine buffer (pH 8.6). Because of the wide substrate specificity of this enzyme, utilizing chlorinated as well as brominated substrates and producing either nonabsorbing chloride or absorbing bromide ions, two different background electrolytes and detection approaches were adopted. A 10 mM chromate-0.1 mM cetyltrimethylammonium bromide background electrolyte (pH 9.2) was used in combination with indirect detection and 20 mM beta-alanine-hydrochloric acid (pH 3.5) in combination with direct detection. The Michaelis constant (K(m)) of haloalkane dehalogenase for 1-bromobutane was determined. The K(m) values 0.59 mM estimated by means of indirect detection method and 0.17 mM by means of direct detection method were comparable with the value 0.13 mM estimated previously by gas chromatography.  相似文献   

2.
The inhibition of the model enzyme, haloalkane dehalogenase from Sphingomonas paucimobilis, was investigated by a combination of electrophoretically mediated microanalysis with a partial filling technique, followed by indirect or direct detection. In this setup, part of the capillary is filled with a buffer suitable for the enzymatic reaction (20 mM glycine buffer, pH 8.6) whereas the rest of the capillary is filled with the background electrolyte optimal for separation of substrates and products. Two different background electrolytes and corresponding detection approaches were used to show the versatility of the developed method. The inhibition effect of 1,2-dichloroethane on the dehalogenation of brominated substrate 1-bromobutane was studied by means of 10 mM chromate - 0.1 mM cetyltrimethylammonium bromide (pH 9.2) in combination with indirect detection or 20 mM beta-alanine - hydrochloric acid (pH 3.5) in combination with direct detection. The method was used to estimate the inhibition constant K(I) (0.44 mM by indirect detection and 0.63 mM by of direct detection) and to determine the inhibition type. Compared to spectrophotometric and other discontinuous assays, the method is rapid, can be automated, and requires only small amount of reagents that is especially important in the case of enzymes and inhibitors.  相似文献   

3.
Nováková S  Glatz Z 《Electrophoresis》2002,23(7-8):1063-1069
Electrophoretically mediated microanalysis (EMMA) was applied for the study of kinetic parameters of the bisubstrate enzymatic reaction of rhodanese. The Michaelis constants (K(m)) for both substrates and the effect of temperature on rhodanese reaction were evaluated by means of the combination of the EMMA methodology with a partial filling technique. In this setup, the part of the capillary is filled with the buffer best for the enzymatic reaction whereas, the rest of the capillary is filled with the background electrolyte optimal for separation of substrates and products. The enzymatic reaction was performed in 25 mM N-(2-hydroxymethyl)piperazine-2'-(2-ethanesulfonic acid) (HEPES) buffer (pH 8.5) while the low pH background electrolyte 100 mM beta-alanine-HCl (pH 3.5) was used for separation of substrates and products that are the inorganic anions. The estimated value of K(m) for thiosulfate of 1.30 x 10(-2) M was consistent with previously published values; the K(m) for cyanide of 7.6 x 10(-3) M was determined for the first time. In addition, the type of kinetic mechanism of enzymatic reaction was also elucidated. The finding of the double displacement (ping-pong) mechanism is in accordance with previous literature data. Also, the experimentally determined temperature optimum of the rhodanese-catalyzed reaction around 20-25 degrees C agreed with literature values.  相似文献   

4.
A new sensitive method has been developed for the determination of haloalkane dehalogenase activity. The enzymatic reactions were carried out directly in thermostatted autosampler vials and the formation of product - bromide or chloride ions - was monitored by sequential capillary zone electrophoresis runs. The determinations were performed in a 75 microm fused-silica capillary using 5 mM chromate, 0.5 mM tetradecyltrimethylammonium bromide (pH 8.4) as a background electrolyte, separation voltage 15 kV (negative polarity) and indirect detection at sample wavelength 315 nm, reference wavelength 375 nm for brominated and chlorinated substrates, respectively 0.1 M beta-alanine-HCl (pH 3.50) as a background electrolyte, separation voltage 18 kV (negative polarity) and direct detection at 200 nm for brominated substrates. The temperature of capillary was in both cases 25 degrees C. The method is rapid, can be automated, and requires only small amount of enzyme preparation and substrate.  相似文献   

5.
An enzyme-based biosensor was developed by co-immobilization of purified enzyme haloalkane dehalogenase (EC 3.8.1.5) and a fluorescence pH indicator on the tip of an optical fiber. Haloalkane dehalogenase catalyzes hydrolytic dehalogenation of halogenated aliphatic hydrocarbons, which is accompanied by a pH change influencing the fluorescence of the indicator. The pH sensitivity of several fluorescent dyes was evaluated. The selected indicator 5(6)-carboxyfluorescein was conjugated with bovine serum albumin and its reaction was tested under different immobilization conditions. The biosensor was prepared by cross-linking of the conjugate in tandem with haloalkane dehalogenase using glutaraldehyde vapor. The biosensor, stored for 24 h in 50 mM phosphate buffer (pH 7.5) prior to measurement, was used after 15 min of equilibration, the halogenated compound was added, and the response was monitored for 30 min. Calibration of the biosensor with 1,2-dibromoethane and 3-chloro-2-(chloromethyl)-1-propene showed an excellent linear dependence, with detection limits of 0.133 and 0.014 mM, respectively. This biosensor provides a new tool for continuous in situ monitoring of halogenated environmental pollutants.  相似文献   

6.
The use of capillary electrophoresis for the determination of gamma-glutamyltransferase (GGT) activity with gamma-glutamyl-p-nitroanilide (Glu-p-NA) as a substrate was investigated. The reaction velocity was quantified spectrophotometrically by the corrected peak area of the product p-nitroaniline (pNA) at 380 nm. Micelles composed of sodium deoxycholic acid were used in the background electrolyte in order to obtain a baseline separation between the substrate and the product. The presence of the micelles did not influence the enzymatic reaction. The electrophoretic system was used, not only for the separation and quantitation of the different reaction compounds but also for the in-capillary mixing of the enzyme and substrate plugs. This methodology is known as electrophoretically mediated microanalysis (EMMA). With the developed in-capillary activity assay an average Michaelis constant (K(M)) for GGT was calculated to be 2.09 mM (RSD = 7.3%, n = 3), a value consistent with previously reported values.  相似文献   

7.
A method for determining bovine plasma amine oxidase (PAO; EC 1.4.3.6) activity with benzylamine (Bz) as substrate is described. Electrophoretically mediated microanalysis (EMMA) combined with micellar electrokinetic capillary chromatography (MEKC) was used to perform an on-capillary enzymatic reaction and to separate the generated benzaldehyde from the other reaction products. The capillary was only partially filled with the separation solution, since the enzyme was unstable in the presence of the applied surfactant. The initial reaction velocity of the enzyme-catalyzed reaction was estimated from the peak area of the enzyme product, benzaldehyde. An amplification step was introduced by means of an on-capillary incubation of 15 min, in order to accumulate enough reaction product to detect spectrophotometrically at 254 nm. This set-up resulted in a fully automated assay, which can be carried out in less then 35 min. Using the Lineweaver-Burk equation, an average Michaelis constant (K(M)) for PAO was calculated to be 0.74 mM +/- 0.05 mM, which is consistent with previously reported values.  相似文献   

8.
An electrophoretically mediated microanalysis method with partial filling technique was developed for screening aromatase inhibitors in traditional Chinese medicine. The in‐capillary enzymatic reaction was performed in 20 mM sodium phosphate buffer (pH 7.4), and sodium phosphate buffer (20 mM, pH 8.0) was used as a background electrolyte. A long plug of coenzyme reduced β‐nicotinamide adenine dinucleotide 2′‐phosphate hydrate dissolved in the reaction buffer was hydrodynamically injected into a fused silica capillary followed by the injection of reaction buffer, enzyme, and substrate solution. The reaction was initiated with a voltage of 5 kV applied to the capillary for 40 s. The voltage was turned off for 20 min to increase the product amount and again turned on at a constant voltage of 20 kV to separate all the components. Direct detection was performed at 260 nm. The enzyme activity was directly assayed by measuring the peak area of the produced β‐nicotinamide adenine dinucleotide phosphate and the decreased peak area indicated the aromatase inhibition. Using the Lineweaver–Burk equation, the Michaelis–Menten constant was calculated to be 50 ± 4.5 nM. The method was applied to the screening of aromatase inhibitors from 15 natural products. Seven compounds were found to have potent AR inhibitory activity.  相似文献   

9.
We present an analysis of rare event trajectories for the nucleophilic displacement of a chloride anion of 1,2-dichloroethane by a carboxylate group in haloalkane dehalogenase from Xanthobacterautotrophicus (DhlA) and in aqueous solution. Differences in the transmission coefficient are rationalized on the basis of the electrostatic coupling between the chemical system and the environment. Detailed analysis of the reactive trajectories reveals that the evolution of the hydrogen bond interactions established between the substrate and the environment present significant differences in aqueous solution and in the enzyme. The structure of the enzymatic active site provides a more adequate interaction pattern for the reaction progress.  相似文献   

10.
An electrophoretically mediated microanalysis method with a partial filling technique was developed for flavin-containing monooxygenase, form 3 (FMO3). The in-line enzymatic reaction was performed in 100 mM phosphate reaction buffer (pH 7.4) whereas 150 mM phosphate buffer (pH 3.3) was used as a background electrolyte. A long plug of cofactor NADPH dissolved in reaction buffer was hydrodynamically injected into a fused-silica capillary, followed by enzyme and substrate solution. The reaction was initiated at 37 degrees C in the thermostated part of the cartridge by the application of 9 kV for 0.9 min. The voltage was turned off to increase the product amount (zero-potential amplification) and again turned on at a constant voltage of 10 kV to elute all the components. Direct detection was performed at 191 nm. The developed electrophoretically mediated microanalysis method was applied for the kinetics study of FMO3 using clozapine as a substrate probe. A Michaelis-Menten constant (K(m)) of 410.3 microM was estimated from the corrected peak area of the product, clozapine N-oxide. The calculated value of the maximum reaction velocity (V(max)) was found to be 1.86 nmol/nmol enzyme/min. The acquired FMO3 kinetic parameters are in accordance with the published literature data.  相似文献   

11.
Iqbal J  Burbiel JC  Müller CE 《Electrophoresis》2006,27(12):2505-2517
Fast and convenient CE assays were developed for the screening of adenosine kinase (AK) inhibitors and substrates. In the first method, the enzymatic reaction was performed in a test tube and the samples were subsequently injected into the capillary by pressure and detected by their UV absorbance at 260 nm. An MEKC method using borate buffer (pH 9.5) containing 100 mM SDS (method A) was suitable for separating alternative substrates (nucleosides). For the CE determination of AMP formed as a product of the AK reaction, a phosphate buffer (pH 7.5 or 8.5) was used and a constant current (95 microA) was applied (method B). The methods employing a fused-silica capillary and normal polarity mode provided good resolution of substrates and products of the enzymatic reaction and a short analysis time of less than 10 min. To further optimize and miniaturize the AK assays, the enzymatic reaction was performed directly in the capillary, prior to separation and quantitation of the product employing electrophoretically mediated microanalysis (EMMA, method C). After hydrodynamic injection of a plug of reaction buffer (20 mM Tris-HCl, 0.2 mM MgCl2, pH 7.4), followed by a plug containing the enzyme, and subsequent injection of a plug of reaction buffer containing 1 mM ATP, 100 microM adenosine, and 20 microM UMP as an internal standard (I.S.), as well as various concentrations of an inhibitor, the reaction was initiated by the application of 5 kV separation voltage (negative polarity) for 0.20 min to let the plugs interpenetrate. The voltage was turned off for 5 min (zero-potential amplification) and again turned on at a constant current of -60 microA to elute the products within 7 min. The method employing a polyacrylamide-coated capillary of 20 cm effective length and reverse polarity mode provided good resolution of substrates and products. Dose-response curves and calculated K(i) values for standard antagonists obtained by CE were in excellent agreement with data obtained by the standard radioactive assay.  相似文献   

12.
A simple and fast capillary electrophoretic method has been developed for the enantioselective separation of citalopram and its main metabolites, namely N-desmethylcitalopram and N,N-didesmethylcitalopram, using beta-cyclodextrin (beta-CD) sulfate as the chiral selector. For method optimisation several parameters were investigated, such as CD and buffer concentration, buffer pH, and capillary temperature. Baseline enantioseparation of the racemic compounds was achieved in less than 6 min using a fused-silica capillary, filled with a background electrolyte consisting of a 35 mM phosphate buffer at pH 2.5 supplemented with 1% w/v beta-CD sulfate and 0.05% w/v beta-CD at 25 degrees C and applying a voltage of -20 kV. A fast separation method for citalopram was also optimized and applied to the analysis of pharmaceutical formulations. Racemic citalopram was resolved in its enantiomers in less than 1.5 min using short-end injection (8.5 cm, effective length) running the experiments in a background electrolyte composed of a 25 mM citrate buffer at pH 5.5 and 0.04% w/v beta-CD sulfate at a temperature of 10 degrees C.  相似文献   

13.
A combination of the electrophoretically mediated microanalysis methodology with a partial filling technique was applied for the inhibition study of bovine liver rhodanese by 2-oxoglutarate. In this set-up, part of the capillary is filled with the best buffer for the enzymatic reaction, while the rest of the capillary is filled with the optimal background electrolyte for separation of substrates and products. The estimated value of KI for 2-oxoglutarate was 3.62·10−4±1.43·10−4 M with respect to cyanide and 1.40·10−3±1.60·10−4 M with respect to thiosulfate. In addition, the type of inhibition was also evaluated. The findings of 2-oxoglutarate as the competitive inhibitor with respect to cyanide and as the uncompetitive inhibitor with respect to thiosulfate are in accordance with previous literature data.  相似文献   

14.
An electrophoretically mediated microanalysis (EMMA) method has been developed for yeast alcohol dehydrogenase and quantification of reactant and product cofactors, NAD and NADH. The enzyme substrate ethanol (1% (v/v)) was added to the buffer (50 mM borate, pH 8.8). Results are presented for parallel capillary electrophoresis with a novel miniature UV area detector, with an active pixel sensor imaging an array of two or six parallel capillaries connected via a manifold to a single output capillary in a commercial CE instrument, allowing conversions with five different yeast alcohol dehydrogenase concentrations to be quantified in a single experiment.  相似文献   

15.
16.
An electrophoretically mediated microanalysis (EMMA) approach, used to perform on-line chemistry between two small molecules, has been characterized and optimized. The plug-plug type EMMA method involved electrophoretic mixing and subsequent reaction of nanoliter plugs of kanamycin-containing samples and 1,2-phthalic dicarboxaldehyde and mercaptoacetic acid within the confines of the capillary column, which acts as a microreactor. Analyses were performed by pressure-injecting a plug of kanamycin sandwiched in two reagent plugs. A potential of 375 Vcm(-1) was then applied to electrophoretically mix the two reactants, and an incubation time of up to 5 min allowed the reaction to proceed prior to the application of a separation potential of 588 Vcm(-1). UV detection was at 335 nm. The background electrolyte was 30 mM sodium tetraborate at pH 10.0, containing 16% of methanol. The method was validated in terms of linearity, limits of quantitation and detection, and precision. The method allows determination of kanamycin in bulk samples as a fully automated procedure.  相似文献   

17.
On-line in vitro microdialysis (MD) sampling followed by HPLC separation and UV absorbance detection (HPLC-UV) was used to monitor carbohydrate enzyme systems. Fundamental parameters (i.e., K(m) and V(max)) of hydrolysis reactions of 4-nitrophenyl-beta-D-glucopyranoside, 4-nitrophenyl-beta-d-galactopyranoside, and 4-nitrophenyl-beta-D-xylopyranoside were determined for a model enzyme, almond beta-glucosidase. Accurate quantitation was achieved via internal standard methodology and compared to spectrophotometric data and literature K(m) values, which were found to be 2.6+/-0.5 mM (MD), 2.7+/-0.4 mM (spec), and 2.5 mM (lit), for the substrate 4-nitrophenyl-beta-d-glucopyranoside. A previously unpublished K(m) value for the substrate salicin was also determined by this method. An application is shown for monitoring the glycoside salicin and its hydrolysis product saligenin in a commercially available willow bark product that is used for making tea. This versatile method has far-reaching applications to monitoring a variety of carbohydrates in enzymatic processes without complex sample preparation procedures and without volume loss.  相似文献   

18.
In this work, an electrophoretically mediated microanalysis (EMMA) method with a partial‐filling technique was setup to evaluate the inhibitory potency of novel compounds toward aminopeptidase N (APN). It was necessary to optimize the electrophoretic conditions with respect to the kinetic constraints and for attaining high sensitivity. In our setup, a part of the capillary was filled with the incubation buffer for the enzyme reaction, whereas the rest was filled with a suitable BGE for the separation of substrates and products. To monitor the performance of the newly developed method, the kinetic constants (Km and Vmax) for the catalyzed dissociation of l ‐Leucine‐p‐nitroanilide in the presence of APN as well as the inhibition constant (IC50) of a known competitive inhibitor, that is bestatin, were determined and these results were compared with those obtained by a classical spectrophotometric assay. The developed EMMA method was subsequently applied to the screening of 30 APN inhibitors. Whereas the inhibition potency of these inhibitors (expressed in IC50 values) were significantly underestimated by the EMMA method, the order of the inhibitory potential of these various compounds was found in agreement with the literature.  相似文献   

19.
An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of l-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-l-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-l-methionine sulfoxide and the product Fmoc-l-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-l-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-l-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis–Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.
Figure
Stereospecific EMMA for methionine sulfoxide reductase enzymes Methionine sulfoxide [Met(O)] which may be generated via oxidation by reactive oxygen species (ROS) is reduced by methionine sulfoxide reductase (Msr) enzymes in a stereospecific manner. The present assay allows the in-capillary incubation of recombinant human Msr enzymes followed by separation and analysis of the Met(O) diastereomers as well as the product methionine.  相似文献   

20.
This review describes the existing developments in the use of the capillary electrophoretic microanalytical technique for the in-line study of enzyme reaction, electrophoretically mediated microanalysis (EMMA). The article is divided into a number of parts. After an introduction, the different modes, basic principle, procedure, and some mathematical treatments of EMMA methodology are discussed and illustrated. The applications of EMMA for enzyme assay and for non-enzymatic determination are summarized into two tables. In addition to classical capillary electrophoresis (CE) instrument EMMA, special emphasis is given to a relatively new technique: EMMA on CE microchip. Finally, conclusions are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号