首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
两点注记     
[1]给出求函数方程 f(x)=0 重根的迭代函数(I.F.) x_(n+1)=x_n-m{f(x_n)/f′(x_n)+f(z_n)/f′(z_n)},Z_n=x_n-m(f(x_n)/f′(x_n)),  相似文献   

2.
具有阻尼项的二阶半线性偏微分方程解的振动性   总被引:1,自引:0,他引:1  
研究了一类具有阻尼项的二阶半线性偏微分方程div(A(x)‖▽u(x)‖p-2▽u(x))+〈■(x),‖▽u(x)‖p-2▽u(x)〉+C(x)u(x)p-2u(x)=0,p>1运用偏Riccati变换和H函数方法,获得了该方程解的振动性的若干充分条件.  相似文献   

3.
解非线性方程组P(x)=0的Newton叠代法S_(n 1)=u(x_n)的种种改进与其叠代函数u(x)=x-P’(x)~(-1) P(x)由一目拓广到两目ω(x,z)=x-P’(z)~(-1)P(x)有关,King-Werner的改进方案x_(n 1)=w(x_n, 1/2(x_n y_n)),y_(n 1)=w(x_(n 1),1/2(x_n y_n))保持计值量不变而使收敛阶达到1 2~(1/2),我们证明了,设P:D? C~N→C~N在凸区域D上具有以L为常数的Lipschitz连续的二阶Frechet导数P″(x),||P″x||≤M x∈D,?x_0∈D,x_1=u(x_0),||x_1-x_0||≤η, ||P’(x_0)~(-1)||≤β,M 1/12Lη≤K,h=Kβη≤1/2,S≡{x|||x-x_1||≤η(1-(1-2h)~(1/2)/(1 (1-2h)~(1/2))}?D,则King-Werner叠代过程产生的x_n和y_n都属于S并且收敛于N元方程组P(x)=0的解,这个结论,与关于Newton叠代过程收敛性的Ostrowski-定理十分相似。  相似文献   

4.
5.
本文讨论具有一致连续系数条件扩散过程的大偏差性质。设X(t)是具有Dirichlet空间(ξ、H_0~1(P_0~d))的扩散过程,其中 ξ(f,g)=1/2 integral from n=R~d to (〈▽f,▽g〉(x)dx)。 P_a~e是过程x_6(t)=x(∈t)满足条件x_6(0)=x,x_6(1)=y的律。那么当∈→0时,(P_(?)~(?),y)具有大偏差性质,且具有速率函数 J_(x,y)(ω)=1/2 integral from n=0 to 1(〈(?)(t),a(-1)(ω(t)),(?)(t)〉dt-1/2 d~2(x,y)。  相似文献   

6.
设非线性方程 F(x)=0 (1) 其中F:DR~n→R~n是Fréchet可导算子。为求(1)的解x=x~*,通常用著名的牛顿迭代 x_(n+1)=x_n-(F′(x_n))~(-1)F(x_n),n=0,1,2,… (2) 有时为了取得更好效果,需要使用阻尼牛顿迭代 x_(n+1)=x_n-λ_n(F′(x_n))~(-1)F(x_n),n=0,1,2,… (3) 其中λ_n∈[0,1]称为阻尼因子。 迭代点列(2),(3)敛速虽高,缺点是要用到计算代价高昂的导算子,因此有导算子被近似替代所导出的种种修正牛顿迭代  相似文献   

7.
一.一元n次方程的根的个数定理一元n次方程有n个根而且只有n个根。 課本中的証明大意如下: (1)根据代数基本定理,推得 f(x)=a_1x~n+a_1x~(n-1)+…+…a_n(a_0≠0) =a_0(x-x_1)(x-x_2)…(x-x_n)=0,而 f(x_1)=f(x_2)=…=f(x_n)=0,所以f(x)=0有n个根x_1,x_2,…,x_n。 (2)设x_(n+1)是和x_1,x_2,…,x_n都不相同的任一数, ∵f(x_n+1)≠0 ∴x_(n+1)不是f(x)=0的根。从而得出結論:f(x)=0只有n个根。证毕。我們知道,要断定f(x)=O的根只有n个,必須确定所有不同的根以及每一个根的重复度。上面的証法只能滿足前者的要求而不能滿足后者,因此,很容易使人发生以下的問題:如果x_(n+1)和x_1,x_2,…,x_n中的某一个相等,于是f(x_(n+1)=0;那么是否可以說x_(n+1)是f(x)=0的第n+1个根呢? 所以这个証法是不妥当的。事实上这个定理应該根据多項式的典型分解式的唯一性来証明。  相似文献   

8.
令Δ_n=sum from j=1 to (?)((?)~2)/((?)x_j~2)为 R~n 上的 Laplace 算子,设Δ_n~ku(x_1,…,x_n)=0,(x_1…,x_n)∈R~n,k≥1,即 u(x_1,…,x_n)是 k 级调和函数。早已知道,u 是实解析函数,因而可延拓成 R~n 在 C~n 的一个邻域的解析函数 u(z_1,…,z_n)(可参看[1])。在这篇短文中,我们将证明 u 是整函数,即可延拓成 C~n 上的解析函数(定理1)。设 u(x_1,…,x_n)是 R~n 上的调和函数,则因 u(z_1,…,z_n)是 C~n 上的解析函数,故sum from j=1 to n ((?)~u)/((?)z_j~2)是 C~n 上的解析函数,因它在 R~n 上为零,故在 C~n 上为零。因此,我们的结果表明R~n 上的调和函数空间与 C~n 上满足:sum from j=1 to n ((?)~2u)/((?)z_j~2)=0的解析函数 u(我们不妨称之为复调和函数)的空间是一致的。同理 R~(n 1)上对最后一个变量为偶的调和函数空间与 C~(n 1)上对最  相似文献   

9.
若a_i,b_i0(i=1,2),|a_1 a_2b_1 b_2|≠0,则数列x_10,x_(n+1)=a_1x_n+a_2/b_1x_n+b_2收敛.若迭代过程中,xn(n=1,2,…)全不是φ(x)=a1x+a2/b1x+b2的不动点,则迭代数列{xn}线性收敛.  相似文献   

10.
1.设x_0,x_1,…,x_n,x是n+2个相异点,证明 f(x_0,x_1,…,x_n,x)=sum from i=0 to n(f(x_j,x)/(multiply from (?) to n(x_j-x_1))) 其中f(xj,x)和f(x_o,x_1,…,x_n,x)分别表示函数f(x)的一阶和n+1阶差商。 2.设n阶线性方程组Ax=b中n×n矩阵A的顺序主子式det(A1)≠0(i=1,…n),令(n+1)×(n+1)矩阵B为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号