首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new mathematical model for the entomopathogenic nematode attacking pests with impulsive state feedback control is considered. By using the Poincaré map, we obtain that the system with impulsive state feedback control has a periodic solution of order one. Sufficient conditions for existence and stability of the order one periodic solution are given. Specifically, the system has a singular order one periodic solution. In some cases, it is possible that the system may also have an order two periodic solution. Our results show that the control measure is effective and reliable.  相似文献   

2.
The order-1 periodic solution of the system with impulsive state feedback control is investigated. We get the sufficient condition for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we obtain a new judgement method for the stability of the order-1 periodic solution of the semi-continuous systems by referencing the stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion. Finally, we analyze numerically the theoretical results obtained.  相似文献   

3.
This paper studies systematically a Bedd-ington?CDeAngelis prey?Cpredator system with harvesting and impulsive state feedback control. Conditions for existence and stability of predator-free periodic solution are obtained. When the predator-free periodic solution loses its stability, the existence and stability of nontrivial period solution are also established. Furthermore, computer simulations show that this impulsive system displays a series of complex phenomena, including period-doubling bifurcation and cascade, period window, and chaotic bands. Through numerical simulation, it is also observed that capture capability can influence the amount of predator released and the interval of the stability for nontrivial period-1 solution. Moreover, the superiority of impulsive state feedback control strategy is also exhibited over the impulsive fixed-time control.  相似文献   

4.
In this paper, a predator–prey system with mutual interference and impulsive state feedback control is constructed. Firstly, by using the stability theorem, we obtain the global asymptotically stability of the positive equilibrium for the system without impulse effects. Secondly, by using the geometric theory of differential equations, the method of successor functions and mathematical analysis, we obtain some sufficient conditions for the existence, uniqueness and orbital asymptotically stability of the order-1 periodic solution for the system with impulse effects. Finally, the main conclusions are verified by numerical simulation, and the pest prevention and control strategies on combining light trapping and water-gun spraying are proposed.  相似文献   

5.
A pest management SI model with impulsive releases of infective pests and spraying pesticides is proposed and investigated. We prove that all solutions of the model are uniformly ultimately bounded. We also obtain the sufficient conditions of globally asymptotic stability periodic solution of pest-extinction and permanence of the model. The approach of combining impulsive releasing infective pests with impulsive spraying pesticides provides reliable tactical basis for the practical pest management.  相似文献   

6.
In this paper, a predator–prey model with both constant rate harvesting and state dependent impulsive harvesting is analyzed. By using differential equation geometry theory and the method of successor functions, the existence, uniqueness and stability of the order one periodic solution have been studied. Sufficient conditions which guarantee the nonexistence of order k (k≥2) periodic solution are given. We also present that the system exhibits the phenomenon of homoclinic bifurcation under some parametric conditions. Finally, some numerical simulations and biological explanations are given.  相似文献   

7.
In this paper, a mathematical model for ethanol fermentation with gas stripping is investigated. Firstly, the model with continuous substrate input is taken. We study the existence and local stability of two equilibrium points. According to Poincare–Bendixson Theorem, the sufficient condition for the globally asymptotical stability of positive equilibrium point is obtained, which implies that we can get stable ethanol product. Secondly, we study the model with impulsive substrate input and obtain the sufficient condition for the local stability of cell-free periodic solution by using the Floquet’s theory of impulsive differential equation and small-amplitude perturbation skills. In a certain limiting case, it is shown that a nontrivial periodic solution emerges via a supercritical (subcritical) bifurcation. Finally, our results are confirmed by means of numerical simulation.  相似文献   

8.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

9.
Concerning the polluted environment in inshore areas and the effects of unbalanced impulsive diffusion between inshore and offshore areas on the size of fish population, based on optimal harvesting policy, a logistic offshore fishery system with impulsive pollutant input in inshore areas and impulsive diffusion at different fixed time is formulated, and we investigate the dynamics of such system. The sufficient conditions are obtained for the existence of the positive periodic solution and the global asymptotic stability of both the trivial periodic solution and the positive periodic solution. Moreover, the maximum sustainable yield and the corresponding harvesting effort are obtained.  相似文献   

10.
In this paper, a mathematical model for the entomopathogenic nematode attacking the pest is investigated. This novel theoretical framework could result in an objective criterion on how to release the entomopathogenic nematode in order to control the pest population under the economic threshold (ET) which indicates the maximally admissible pest densities. Firstly, continuous release of the entomopathogenic nematode is taken. By using qualitative analysis method, the sufficient condition of the global stability of the positive equilibria and the existence and uniqueness of limit cycle of the system are obtained. Secondly, impulsive release of the entomopathogenic nematode is also considered. Using the Floquet’s theorem and small-amplitude perturbation, we obtain that the pest-free periodic solution is locally stable if some conditions are satisfied. In a certain limiting case, it is shown that a nontrivial periodic solution emerges via a supercritical bifurcation. Finally, our findings are confirmed by means of numerical simulations.  相似文献   

11.
In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, we obtain a "microorganism-extinction" periodic solution. Further, we establish the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution. Using new computational techniques for impulsive and delayed differential equation, we prove that the system is permanent under appropriate conditions. Our results show that time delay is "profitless".  相似文献   

12.
Shi  Ruiqing  Chen  Lansun 《Nonlinear dynamics》2009,58(1-2):443-451

In this paper, a ratio-dependent predator–prey model with stage structure in the prey is constructed and investigated. In the first part of this paper, some sufficient conditions for the existence and stability of three equilibriums are obtained. In the second part, we consider the effect of impulsive release of predator on the original system. A sufficient condition for the global asymptotical stability of the prey-eradication periodic solution is obtained. We also get the condition, under which the prey would never be eradicated, i.e., the impulsive system is permanent. At last, we give a brief discussion.

  相似文献   

13.
In this paper, the incremental harmonic balance method is employed to solve the periodic solution that a vibration active control system with double time delays generates, and the stability analysis of which is achieved by the Poincare theorem. The system stability regions can be obtained in view of time delay and feedback gain, the variation of which is also studied. It turns out that along with the increase of time delay, the active control system is not always from stable to unstable, and the system can be from stable to unstable state, whereas the system can be from unstable to stable state. The extent that the two times delays impact on the system stability region is mainly related to the relative magnitude of the two feedback gains. The system can maintain the stable state under the condition of the well-matched feedback gains. The results can provide evidence to design the control strategy of time-delayed feedback.  相似文献   

14.
An impulsive multi-delayed feedback control strategy to control the period-doubling bifurcations and chaos in an n dimensional discrete system is proposed. This is an extension of the previous result in which the control method is applicable to the one-dimensional case. Then the application of the control method in a discrete prey–predator model is studied systematically, including the dynamics analysis on the prey–predator model with no control, the bifurcations analysis on the controlled model, and the bifurcations and chaos control effects illustrations. Simulations show that the period-doubling bifurcations and the resulting chaos can be delayed or eliminated completely. And the periodic orbits embedded in the chaotic attractor can be stabilized. Compared with the existed methods, a milder condition is needed for the realization of the proposed method. The condition may be considered as a generic case and we may state that almost all periodic orbits can be stabilized by the proposed method. Besides, the idea of impulsive control makes the implementation of the proposed control method easy. The impulsive interval is embodied in the analytical expression of the stability condition, hence can be chosen qualitatively according to the real needs, which is an extension of the existed related results. The introduction of multi-delay enlarges the domain of the control parameters and makes the selection of the control parameters have many choices, and hence become flexible.  相似文献   

15.
In this article, we investigate a prey– predator model with Allee effect and state-dependent impulsive harvesting. We obtain the sufficient conditions for the existence and uniqueness of order-1 periodic solution of system (1.2) by means of the geometry theory of semicontinuous dynamic system and the method of successor function. We also obtain that system (1.2) exhibits the phenomenon of heteroclinic bifurcation about parameter $\alpha $ . The methods used in this article are novel and prove the existence of order-1 periodic solution and heteroclinic bifurcation.  相似文献   

16.
In this paper, a chemostat model with periodically pulsed input and time delay is considered. We show that there exists a microorganism-free periodic solution, which is globally attractive when the period of impulsive effect is less than some critical value. Further, we give the sufficient conditions for the permanence of the model with time delay and pulsed input. We show that time delay, impulsive input can bring different effects on the dynamic behavior of the model by numerical analysis. We show that impulsive effect destroys the equilibria of the unforced continuous system and initiates periodic solution. Our results can be applied to culture the microorganism.  相似文献   

17.
利用解析和数值方法,以弹簧摆为对象讨论了线性的时滞位移反馈控制对一类平方非线性系统动力学行为的影响。根据多尺度法得到了1:2内共振情况下一次近似解的慢变方程,基于此讨论了反馈控制参数对零解的稳定性和周期解振幅的影响。结果表明:耦合的反馈项在平均方程中并不出现。根据罗斯-霍尔维茨判据发现,没有反馈控制时该系统的零解总是不稳定的,而通过调整反馈增益或反馈时滞就可以很容易地使零解稳定。反馈时滞对周期解振幅的影响呈现周期性,反馈增益或时滞发生变化时,周期解振幅的变化会表现出鞍结分岔现象;同时基于MATLAB软件的数值计算结果验证了该理论分析的正确性。  相似文献   

18.
冲击动力系统的鲁棒稳定性分析   总被引:3,自引:0,他引:3  
考虑冲击动力系统的k-p周期运动的鲁棒稳定性问题。首先,根据微分方程的解、冲击条件和衔接条件,应用迭代法给出了系统存在k-p周期运动的充分必要条件,并利用稳定性的等价原理,通过周期运动的扰动差分方程导出其稳定条件;然后,着重对含有不确定参数的冲击动力系统的k-p周期运动的稳定性进行了分析,得出了鲁棒稳定的充分条件,文末给出了用于阐明理论结果的算例。  相似文献   

19.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.  相似文献   

20.
In this paper, a nonautonomous impulsive neutral-type neural network with delays is considered. By establishing a singular impulsive delay differential inequality and employing contraction mapping principle, several sufficient conditions ensuring the existence and global exponential stability of the periodic solution for the impulsive neutral-type neural network with delays are obtained. Our results can extend and improve earlier publications. An example is given to illustrate the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号