首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
液体弹珠是粒子包裹液体形成的不粘湿液滴。由于液体弹珠表面粒子阻止了内部液滴与外部基底的直接接触,使其能在固体和液体表面稳定存在,显示出独特的性能,在微反应器、传感器、生物医药和微流控等领域有着潜在的应用价值。液体弹珠的壳层粒子来源丰富,且不同粒子构筑的液体弹珠具有不同的性能和应用领域。本文综述了二氧化硅(SiO2)、四氧化三铁(Fe3O4)、石松、聚四氟乙烯(PTFE)和纤维素等壳层粒子衍生出的液体弹珠,并展望了液体弹珠的发展趋势和应用前景。  相似文献   

2.
Liquid marbles (LMs) are liquid droplets coated with a layer of lyophobic particles at the air-liquid interface. Since the pioneering work by Aussillous et al. in 2001, LMs have attracted significant attention owing to their facile fabrication, flexibility in the choice of the constituent particles and liquids, intriguing properties such as non-wetting and non-adhesive nature, satisfactory elasticity and stability, as well as promising applications in microfluidics, sensors, controlled release, and microreactors. The classical strategy for the preparation of LMs involves rolling a small volume of a droplet on a lyophobic powder bed for complete encapsulation of the liquid by the particles. In addition, various innovative methods, including electrostatic and coalescent approaches, have been developed for preparing special LMs with a complicated structure or morphology. Diverse materials such as water, surfactant solutions, liquid metals, reagents, blood, and even viscous adhesives have been employed as the internal liquid for the fabrication of LMs. Theoretically, any particulates such as lycopodium, polytetrafluoroethylene, Fe3O4, SiO2, and graphite grains can be employed as the outer coating, but they are usually required to be lyophobic with sizes of less than hundreds of microns. The unique structure of the particle-covered droplet and the dual solid-liquid characteristics endow LMs with some unique and interesting properties, especially the non-wetting and non-adhesive nature. As the lyophobic coating particles restrain the internal liquid from contacting the substrate, LMs can move easily across either solid or liquid surfaces, neither wetting the substrate nor contaminating the internal liquid. An equally fascinating property of LMs is their satisfactory stability, which is necessary for most of their applications. The high stability of LMs stems from the protection of the coating powders and is embodied in both good mechanical stability (remaining intact after being released from a certain height or under a certain compression) and long lifetime (greatly suppressing the evaporation of the internal liquid). These extraordinary properties make LMs promising candidates for use in multitudinous fields, especially droplet microfluidics and microreactors. The potential application of LMs in microfluidics is ascribed to their non-wetting, non-adhesive nature and other features such as an ability to float on a liquid surface, coalescence, split, a small force of rolling friction, and response to external forces. Notably, LMs hold great promise for applications in microreactions, because they can create a confined reaction microenvironment, minimize reagent usage, facilitate unhindered gas exchange between the internal liquid medium and the surrounding environment, and allow the entry/exit of the reactants/products. We herein review the recent advances in LMs, such as manufacturing techniques, formation mechanisms, physical properties, and emerging applications. In particular, much attention is paid to the factors affecting the stability of LMs and the potential strategies to increase their stability. Moreover, this review discusses the challenges in the future development of LMs, suggests several possible ways of addressing these challenges, and forecasts the future development directions. We believe that this review can help researchers gain a better understanding of LMs and promote their further advances.  相似文献   

3.
李晓光  庞祥龙 《化学进展》2022,34(8):1760-1771
液体橡皮泥是指空气环境中被颗粒包裹的以可塑性和复杂形状为特征的液体系统,目前已被成功应用于气体传感、蛋白质分析、光催化等领域,并展现出了很多独特优势。这是一种新兴的软物质体系,与被颗粒包裹的形状为类球形的液体弹珠组成相似,但打破了后者的形状单一性。本文从裸液滴和液体弹珠出发,通过对液体形状和颗粒堵塞问题的分析,梳理了液体橡皮泥技术的建立过程。随后,论述了国内外的研究进展,对不同种类液体橡皮泥的制备、特性及应用进行了概括和分析,重点讨论了单层纳米颗粒结构液体橡皮泥的系列研究。最后,围绕液体橡皮泥的概念内涵、制备方法、特性对比、功能应用等问题进行了总结和探讨,并就未来发展方向和研究思路提出了建议。  相似文献   

4.
液体表面张力、粘度综合测定仪   总被引:1,自引:0,他引:1  
张昕 《大学化学》1993,8(1):39-40
  相似文献   

5.
咪唑类离子液体的研究进展   总被引:4,自引:0,他引:4  
咪唑类离子液体以其独特的物理化学性质和在众多领域的巨大应用潜能而引起广泛的关注.本文结合我们的研究工作,对近期国际上关于咪唑类离子液体的气-液和液-液平衡、咪唑类离子液体的表面活性剂行为、传统表面活性剂在咪唑类离子液体中聚集体的形成、表面活性剂/水(油)/咪唑类离子液体三元体系超分子自组装体形成等方面的一些主要研究成果进行了综合评述.在此基础上,提出了进一步开展非传统表面活性剂/离子液体体系超分子自组装体及离子液体结构对聚集体形成、结构、性质影响等研究的设想.  相似文献   

6.
离子液体中的不对称合成研究进展   总被引:7,自引:0,他引:7  
离子液体作为溶剂已广泛应用于许多有机化学反应.总结了离子液体中的不对称有机反应,如氢化反应、酰基化反应、环氧化反应、酶催化反应等.  相似文献   

7.
仿生超疏水性表面的生物应用   总被引:1,自引:0,他引:1  
梁伟欣  张亚斌  王奔  郭志光  刘维民 《化学学报》2012,70(23):2393-2403
自然给科学家和工程师带来仿生的灵感和启发. 近年来, 受自然界中荷叶的启发, 在充分考虑表面形貌和化学组成协同效应的基础上, 人们已经制备出许多仿生超疏水性表面, 这些表面在抗结冰、微流体、生物相容性等领域具有很多潜在的应用价值. 仿生超疏水性表面在生物领域的应用逐渐崭露头角, 研究发现, 超疏水性表面所俘获的空气能够减缓药物释放的速率, 因此利用此类表面作为药物的载体有望实现长期供药. 超疏水特性能在一定程度改善和提高生物体与材料表面之间的相互作用, 例如, 血小板几乎不在超疏水表面上进行粘附和活化避免了造成血栓和血凝, 因此仿生超疏水性表面可用于制备人造血管和与血液相接触的仪器. 细胞和生物分子在不同特殊润湿性表面具有不同的行为和现象, 如粘附、繁殖、吸附等差异, 这有助于进一步探索研究细胞和生物分子的信息功能, 是当前仿生超疏水性表面应用的重要研究方向之一. 本综述简单介绍了经典的润湿模型, 重点总结了仿生超疏水表面在生物领域的应用, 其主要包括控制药物释放、提高血液相容性、蛋白质吸附研究、细胞行为研究、生物分子和细胞微图案化等. 最后, 对仿生超疏水性表面在生物领域研究应用进行了展望.  相似文献   

8.
陈钰  徐建生  郭志光 《化学进展》2012,24(5):696-708
近年来,除了荷叶表面,更多具有特殊润湿性的动植物表面同样受到关注。通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。该综述简单地介绍了表面润湿的基本模型和最新的几种特殊表面结构,重点介绍近几年仿生超疏水表面应用的最新研究进展,主要包括超疏水表面在超疏油、表面润湿转换、外界刺激下的润湿行为调控、微流体、抗结冰等方面的应用。最后,对超疏水表面研究的未来发展进行了展望。  相似文献   

9.
田苗苗  李雪梅  殷勇  何涛  刘金盾 《化学进展》2015,27(8):1033-1041
超疏水材料具有超高的憎水性和自清洁特性,因而在解决材料的润湿和污染方面具有广泛的应用前景。膜蒸馏是一种以多孔疏水膜两侧蒸汽压差为推动力的膜分离过程,是脱盐和水回用中的重要技术。然而膜润湿和污染问题是导致膜蒸馏过程出水品质下降和应用过程稳定性差的关键。本文以膜蒸馏过程为背景,系统介绍了蒸馏过程的发展状况和超疏水膜材料的制备方法,以及超疏水膜在膜蒸馏中的应用,探讨了超疏水膜材料在膜蒸馏过程中的优势,同时指出了其不足和可能的解决方法,以期为膜蒸馏材料的发展提供研究方向和思路。  相似文献   

10.
液体的表面张力与内压   总被引:1,自引:0,他引:1  
在利用Onsager模型推导液体表面张力与内压间的关系时,文献[4]忽视了曲率对表面张力的影响,致使计算值与实验值的偏差较大。本文对此作了修正,建立了一个新的关系式,用实验数据检验表明,它能满意地适用于广阔温度范围内的各种液体。  相似文献   

11.
Little attention has been paid to the participation of the shell of silica‐particle‐based liquid marbles and their influence on chemical reactions. The fabrication of liquid marbles with the encapsulating particle shells not only act as protecting layers to provide a confined environment, but also provide the reactive substrate surfaces to regulate the classical silver mirror reaction. Fabrication of silver mirrors with different morphologies was achieved by modifying particle surface properties, which could further lead to Janus liquid marbles. The different evaporation behavior of microreactors was demonstrated. Micrometer‐sized silica particles were used for the preparation of monolayer‐stabilized liquid marbles, which show great potential in fabricating Janus particles from superhydrophobic particles that are not attainable from Pickering emulsions.  相似文献   

12.
Inspired by aphids, liquid marbles have been studied extensively and have found application as isolated microreactors, as micropumps, and in sensing. However, current liquid‐marble‐based sensing methodologies are limited to qualitative colorimetry‐based detection. Herein we describe the fabrication of a plasmonic liquid marble as a substrate‐less analytical platform which, when coupled with ultrasensitive SERS, enables simultaneous multiplex quantification and the identification of ultratrace analytes across separate phases. Our plasmonic liquid marble demonstrates excellent mechanical stability and is suitable for the quantitative examination of ultratrace analytes, with detection limits as low as 0.3 fmol, which corresponds to an analytical enhancement factor of 5×108. The results of our simultaneous detection scheme based on plasmonic liquid marbles and an aqueous–solid–organic interface quantitatively tally with those found for the individual detection of methylene blue and coumarin.  相似文献   

13.
14.
15.
Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter-scale reactor for concurrent spectro- and electrochemical analyses. The three-dimensional Ag shell of PLMs are exploited as a bifunctional surface-enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read-out of transient electrochemical species, and elucidate the potential-dependent and multi-step reaction dynamics. The 3D configuration of our PLM-based EC-SERS system exhibits 2-fold and 10-fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular-level electrochemical insights and excellent EC-SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes.  相似文献   

16.
Liquid marbles have potential to serve as mini-reactors for fabricating new materials, but this has been exploited little and mostly for conventional chemical reactions. Here, we uncover the unparalleled capability of liquid marbles to act as platforms for controlling the self-assembly of a bio-derived polymer, hydroxypropyl cellulose, into a cholesteric liquid crystalline phase showing structural coloration by Bragg reflection. By adjusting the cholesteric pitch via quantitative water extraction, we achieve liquid marbles that we can tailor for structural color anywhere in the visible range. Liquid marbles respond with color change that can be detected by eye, to changes in temperature, exposure to toxic chemicals and mechanical deformation. Our concept demonstrates the advantages of using liquid marbles as a miniature platform for controlling the liquid crystal self-assembly of bio-derived polymers, and their exploitation to fabricate sustainable, responsive soft photonic objects.  相似文献   

17.
A liquid marble is a liquid droplet coated by a hydrophobic powder. The liquid marble does not wet adjacent surfaces and therefore can be manipulated as a dry soft body. A Belousov-Zhabotinsky (BZ) reaction is an oscillatory chemical reaction exhibiting waves of oxidation. We demonstrate how to make a photo-sensor from BZ medium liquid marbles. We insert electrodes into a liquid marble, prepared from BZ solution and coated with polyethylene powder. The electrodes record a potential difference which oscillates due to oxidation wave-fronts crossing the electrodes. When the BZ marble is illuminated by a light source, the oxidation wave-fronts are hindered and, thus, the electrical potential recorded ceases to oscillate. We characterise several types of responses of BZ marble photosensors to various stimuli, and provide explanations of the recorded activity. BZ liquid marble photosensors may find applications in the fields of liquid electronics, soft robotics and unconventional computing.  相似文献   

18.
Liquid marbles are a promising microreactor platform that recently attracts significant research interest owing to their ability to accommodate a wide range of micro reactions. However, the use of destructive and ex-situ methods to monitor reactions impairs the potential of liquid-marble-based microreactors. This paper proposes a non-destructive, in situ, and cost-effective digital-imaging-based colourimetric monitoring method for transparent liquid marbles, using the enzymatic hydrolysis of starch as an illustrative example. The colourimetric reaction between starch and iodine produces a complex that exhibits a dark blue colour. We found that the absorbance of red channel of digital images showed a linear relationship with starch concentration with high sensitivity and repeatability. This digital-imaging-based colourimetric method was used to study the hydrolysis of starch by α-amylase. The results show high accuracy and applicability of first-order kinetics for this reaction. The demonstration of digital-imaging-based colourimetry indicates the potential of liquid marble-based microreactors.  相似文献   

19.
微柱液相色谱的研究进展   总被引:13,自引:0,他引:13  
介绍了微柱液相色谱(μ-LC)。从理论上简单讨论了μ-LC的柱特性、色谱洗脱效应和柱外效应等一系列问题,综述了μ-LC的柱技术的最新进展,讨论了μ-LC对仪器和附件的要求,特别是微流量输液和检测技术,还探讨了μ-LC与多维色谱、质谱等技术的联用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号