首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007).  相似文献   

2.
3.
4.
5.
This paper presents an alternative proposal concerning the teaching of mathematics. The present paper can be placed within the broader framework of the teaching of mathematics, but also within the more specific framework of category theory (CT). In other words, new ways will be investigated in which CT can be best developed within the broader framework of the teaching of mathematics. Following the research at the end of this paper, the outcome of this investigation is that CT can successfully be used as a background for the foundation and teaching of mathematics.  相似文献   

6.
With the development of qualitative methodologies, interviewing has become one of the main tools in mathematics education research. As the first step in analyzing interviewing in mathematics education we focus here on the stage of planning, specifically, on designing the interview questions. We attempt to outline several features of interview questions and understand what guides researchers in choosing the interview questions. Our observations and conclusions are based on examining research in mathematics education that uses interviews as a data-collection tool and on interviews with practicing researchers reflecting on their practice.  相似文献   

7.
The role of metacognition in mathematics education is analyzed based on theoretical and empirical work from the last four decades. Starting with an overview on different definitions, conceptualizations and models of metacognition in general, the role of metacognition in education, particularly in mathematics education, is discussed. The article emphasizes the importance of metacognition in mathematics education, summarizing empirical evidence on the relationships between various aspects of metacognition and mathematics performance. As a main result of correlational studies, it can be shown that the impact of declarative metacognition on mathematics performance is substantial (sharing about 15–20% of common variance). Moreover, numerous intervention studies have demonstrated that “normal” learners as well as those with especially low mathematics performance do benefit substantially from metacognitive instruction procedures.  相似文献   

8.
This study addresses aspects that should be considered in every investigation concerning the reality of the subject being investigated, which in turn provide the basis for the procedures adopted to carry out the research. It speaks about the analysis of the procedures chosen to carry out the research. It is assumed that this care should be taken by the researcher at the moment the research procedures are being defined and made explicit. It is argued that the consonance between the ontological and epistemological dimensions of “what” and “how” to investigate the subject of investigation confers a degree of confidence to the research findings. The search for that confidence transcends analyses based only on calculations and explanations of methodological procedures, regardless of how well founded they are. This study addresses mathematics education specifically, adopting a phenomenological perspective. It is focused on the constitution of mathematical idealities and of mathematics as a science under the perspective of the Husserlian phenomenological conception of reality and knowledge. Characteristics of a phenomenological pedagogy are presented, which is carried out through work that is always intentional, with the educator taking account of what occurs with himself/herself, with the life world of the school, and with the student. The student is seen as a person and as being with others, his/her classmates, and the theme is addressed in the context of the field of inquiry under focus, with the teacher and with his/her “surroundings”.  相似文献   

9.
10.
In this study, we survey the history of mathematics education in Turkey starting with its historical roots in the foundation of the republic. The changes in mathematics education in Turkey over the last century are investigated through an analysis of changes in curricular documents for K-12 schools. We consider the factors and reasons affecting curriculum developments, changes in philosophy and structure in terms of standards, objective and instructions. This article utilizes archival research techniques by examining original sources and illustrates the nature of the changes benefiting from a historical perspective. As a result of such analysis of the aforesaid sources, we have seen that the main reasons for changing mathematics curricula are: to build up a modern civilization in Turkey; the reports of John Dewey and the recommendations of Kate Wofford, William C. Varaceus and Watson Dickerman; the desire to become a member of the European Union; international factors and political situations.  相似文献   

11.
12.
Research in history of mathematics gained momentum in the past two decades in Turkey. The present paper aims to describe the patterns in the history of mathematics research in Turkey and to analyse the research in Turkey using a mathematics education framework. The qualitative paradigm and a case study design are used in the study. The obtained data were analysed by using the document analysis technique with the help of a content analysis. The study group which is comprised of twenty-two postgraduate theses at master's or doctoral level were purposefully selected from the higher education council postgraduate theses database. Findings indicate a dearth of research in the area and that most of the theses are done in the area of mathematics education. Moreover, the focus, in general, was on attitudinal variables, and cognitive aspects seemed to be ignored.  相似文献   

13.
Many mathematics teachers around the world teach in a language different from the one in which they studied or completed their teacher education. Often these teachers must learn both the registers of mathematics and of mathematics education to teach in the additional language. This paper examines the factors that help teachers to learn these registers in Māori, the Indigenous language of New Zealand. Many of these teachers are second-language learners of the Māori language and attended English-medium schools and teacher-education programmes. After a brief discussion about the key role of language in teaching mathematics, this paper examines data from teachers at two Māori-immersion schools and a professional development facilitator. The analysis provides initial understanding of the factors that support or hinder their learning of the mathematics registers. Finally, a research agenda is suggested for further investigation of this issue.  相似文献   

14.
15.
Proving is an essential activity in mathematics but there are serious difficulties encountered by mathematics undergraduates in engaging with proof in the intended way. This article presents an initial analysis of (i) a quantitative study of a large sample of UK mathematics undergraduates which describes their declared perceptions about proof, and (ii) a qualitative study of a subsample of these students which analyses their actual proof perceptions as well as their actual proof practices. A comparison is also made between their publicly declared perceptions of proof and their personal proclivities in proving.  相似文献   

16.
Luc Trouche  Paul Drijvers 《ZDM》2010,42(7):667-681
In the 1990s, handheld technology allowed overcoming infrastructural limitations that had hindered until then the integration of ICT in mathematics education. In this paper, we reflect on this integration of handheld technology from a personal perspective, as well as on the lessons to be learnt from it. The main lesson in our opinion concerns the growing awareness that students’ mathematical thinking is deeply affected by their work with technology in a complex and subtle way. Theories on instrumentation and orchestration make explicit this subtlety and help to design and realise technology-rich mathematics education. As a conclusion, extrapolation of these lessons to a future with mobile multi-functional handheld technology leads to the issues of connectivity and in- and out-of-school collaborative work as major issues for future research.  相似文献   

17.
Verschaffel  Lieven  Schukajlow  Stanislaw  Star  Jon  Van Dooren  Wim 《ZDM》2020,52(1):1-16

Word problems are among the most difficult kinds of problems that mathematics learners encounter. Perhaps as a result, they have been the object of a tremendous amount research over the past 50 years. This opening article gives an overview of the research literature on word problem solving, by pointing to a number of major topics, questions, and debates that have dominated the field. After a short introduction, we begin with research that has conceived word problems primarily as problems of comprehension, and we describe the various ways in which this complex comprehension process has been conceived theoretically as well as the empirical evidence supporting different theoretical models. Next we review research that has focused on strategies for actually solving the word problem. Strengths and weaknesses of informal and formal solution strategies—at various levels of learners’ mathematical development (i.e., arithmetic, algebra)—are discussed. Fourth, we address research that thinks of word problems as exercises in complex problem solving, requiring the use of cognitive strategies (heuristics) as well as metacognitive (or self-regulatory) strategies. The fifth section concerns the role of graphical representations in word problem solving. The complex and sometimes surprising results of research on representations—both self-made and externally provided ones—are summarized and discussed. As in many other domains of mathematics learning, word problem solving performance has been shown to be significantly associated with a number of general cognitive resources such as working memory capacity and inhibitory skills. Research focusing on the role of these general cognitive resources is reviewed afterwards. The seventh section discusses research that analyzes the complex relationship between (traditional) word problems and (genuine) mathematical modeling tasks. Generally, this research points to the gap between the artificial word problems learners encounter in their mathematics lessons, on the one hand, and the authentic mathematical modeling situations with which they are confronted in real life, on the other hand. Finally, we review research on the impact of three important elements of the teaching/learning environment on the development of learners’ word problem solving competence: textbooks, software, and teachers. It is shown how each of these three environmental elements may support or hinder the development of learners’ word problem solving competence. With this general overview of international research on the various perspectives on this complex and fascinating kind of mathematical problem, we set the scene for the empirical contributions on word problems that appear in this special issue.

  相似文献   

18.
19.
Werner Blum 《ZDM》2014,46(4):697-698
This article pays tribute to the German mathematics educator Arnold Kirsch (1922–2013), especially for his contributions to calculus education. The main aim of his work was to make mathematics accessible to learners so that they are able to genuinely understand the subject.  相似文献   

20.
A rational discussion of the use of Computer algebra systems (CAS) in mathematics teaching in general education needs an explicit image of (general) mathematics education, an explication of global perspectives and goals on mathematics teaching focusing on general education (chapter 1). The conception of general education according to the «ability of communication with experts» described in chapter 2 can be such an orientation for analysing, considering, classifying and assessing the didactical possibilities of using CAS. CAS are materialised mathematics allowing for more or less exhaustive outsourcing of operative (also symbolically) knowledge and skills to the machine. This frees up space of time as well as mental space for the development of those competences being in our view relevant for general mathematics education. In chapter 3 the idea of outsourcing and the role of CAS for it is discussed more detailed as well as consequences being possible for the CAS-supported teaching of mathematics. Beyond, CAS can be didactically used and reflected as a model of communication between (mathematical) experts and lay-persons (chapter 4). Chapter 5 outlines some research perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号