首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Polypyridyl ruthenium(II) complexes [RuII(3-bptpy)(dmphen)Cl]ClO4 (1), [RuII(3-cptpy)(dmphen)Cl]ClO4 (2), [RuII(2-tptpy)(dmphen)Cl]ClO4 (3), and [RuII(9-atpy)(dmphen)Cl]ClO4 (4) {where 3-bptpy?=?4′-(3-bromophenyl)-2,2′:6′,2″-terpyridine, 3-cptpy?=?4′-(3-chlorophenyl)-2,2′:6′,2″-terpyridine, 2-tptpy?=?4′-(2-thiophenyl)-2,2′:6′,2″-terpyridine, 9-atpy?=?4′-(9-anthryl)-2,2′:6′,2″-terpyridine, dmphen?=?2,9-dimethyl-1,10-phenanthroline} have been synthesized and characterized. The DNA-binding properties of the complexes with Herring Sperm DNA have been investigated by absorption titration and viscosity measurements. The ability of complexes to break the pUC19 DNA has been checked by gel electrophoresis. The experimental results suggest that all the complexes bind DNA via partial intercalation. The results also show that the order of DNA-binding affinities of the complexes is 4?<?3?<?2?<?1, confirming that planarity of the ligand in a complex is very important for DNA-binding.  相似文献   

2.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

3.
Abstract

The substitution behavior of the [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex in water with several bio-relevant ligands such as chloride, thiourea and N,N′-dimethylthiourea, was investigated and compared with the reactivity of the [RuII(terpy)(bipy)Cl]Cl and [RuII(terpy)(en)Cl]Cl (bipy =2,2′-bipyridine and en?=?ethylenediamine) complexes. Earlier results have shown that the reactivity and pKa values of Ru(II) complexes can be tuned by a systematic variation of electronic effects provided by bidentate spectator chelates. The reactivity of both the chlorido and aqua derivatives of the studied Ru(II) complexes increases in the order [RuII(terpy)(bipy)X]+/2+?<?[RuII(terpy)(ampy)X]+/2+?<?[RuII(terpy)(en)X]+/2+. This finding can be accounted for in terms of π back-bonding effects provided by the pyridine ligands. The activation parameters for all the studied reactions support an associative interchange substitution mechanism.  相似文献   

4.
The title compound, [Ru(C12H8N2)3]2[Fe(NCS)4](ClO4)2, crystallizes in a tetragonal chiral space group (P41212) and the assigned absolute configuration of the optically active molecules was unequivocally confirmed. The Δ‐[RuII(phen)3]2+ complex cations (phen is 1,10‐phenanthroline) interact along the 41 screw axis parallel to the c axis, with an Ru...Ru distance of 10.4170 (6) Å, and in the ab plane, with Ru...Ru distances of 10.0920 (6) and 10.0938 (6) Å, defining a primitive cubic lattice. The Fe atom is situated on the twofold axis diagonal in the ab plane. The supramolecular architecture is supported by C—H...O interactions between the [RuII(phen)3]2+ cation and the disordered perchlorate anion. This study adds to the relatively scarce knowledge about intermolecular interactions between [Ru(phen)3]2+ ions in the solid state, knowledge that eventually may also lead to a better understanding of the solution state interactions of this species; these are of immense interest because of the photochemical properties of these ions and their interactions with DNA.  相似文献   

5.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

6.
Hong  Xian-Lan  Chao  Hui  Wang  Xiang-Li  ji  Liang-Nian  li  Hong 《Transition Metal Chemistry》2004,29(5):561-565
Two novel RuII complexes [Ru(dppt)(bpy)Cl]ClO4 (1) and [Ru(pta)(bpy)Cl]ClO4 (2)[dppt, pta and bpy = 3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine, 3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene and 2,2-bipyridine, respectively] were synthesized and characterized by elemental analysis and electrospray mass spectrometry, 1H-n.m.r., and u.v.–vis spectroscopy. The redox properties of the complexes were examined using cyclic voltammetry. Due to the strong -accepting character of asymmetric ligands, the MLCT bands of (1) and (2) are shifted significantly to lower energies by comparison with [Ru(tpy)(bpy)Cl]+.  相似文献   

7.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

8.
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal.  相似文献   

9.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

10.
The title compound, trans‐[RuIICl2(N1‐mepym)4] (mepym is 4‐methylpyrimidine, C5H6N2), obtained from the reaction of trans,cis,cis‐[RuIICl2(N1‐mepym)2(SbPh3)2] (Ph is phenyl) with excess mepym in ethanol, has fourfold crystallographic symmetry and has the four pyrimidine bases coordinated through N1 and arranged in a propeller‐like orientation. The Ru—N and Ru—Cl bond distances are 2.082 (2) and 2.400 (4) Å, respectively. The methyl group, and the N3 and Cl atoms are involved in intermolecular C—H?N and C—­H?Cl hydrogen‐bond interactions.  相似文献   

11.
The complex cis‐[RuIII(dmbpy)2Cl2](PF6) ( 2 ) (dmbpy = 4, 4′‐dimethyl‐2, 2′‐bipyridine) was obtained from the reaction of cis‐[RuII(dmbpy)2Cl2] ( 1 ) with ammonium cerium(IV) nitrate followed by precipitation with saturated ammonium hexafluoridophosphate. The 1H NMR spectrum of the RuIII complex confirms the presence of paramagnetic metal atoms, whereas that of the RuII complex displays diamagnetism. The 31P NMR spectrum of the RuIII complex shows one signal for the phosphorus atom of the PF6 ion. The perspective view of each [RuII/III(dmbpy)2Cl2]0/+ unit manifests that the ruthenium atom is in hexacoordinate arrangement with two dmbpy ligands and two chlorido ligands in cis position. As the oxidation state of the central ruthenium metal atom becomes higher, the average Ru–Cl bond length decreases whereas the Ru–N (dmbpy) bond length increases. The cis‐positioned dichloro angle in RuIII is 1.3° wider than that in the RuII. The dihedral angles between pair of planar six‐membered pyridyl ring in the dmbpy ligand for the RuII are 4.7(5)° and 5.7(4)°. The observed inter‐planar angle between two dmbpy ligands in the RuII is 89.08(15)°, whereas the value for the RuIII is 85.46(20)°.  相似文献   

12.
Two novel RuII complexes [Ru(phen)2(PNOPH)]2+ and [Ru(dmp)2 (PNOPH)]2+ (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, PNOPH = 2-(4-nitrophenyl)imidazo-[4,5-f][1,10]phenanthroline) and their deprotoned complexes were synthesized and characterized by ES–MS, 1H - n.m.r, u.v.–vis. and electrochemistry. The crystal structure of the deprotonated complex [Ru(dmp)2 (PNOP)][ClO4] · CH3CN was determined by means of X-ray single crystal diffraction. Nonlinear optical properties of the RuII complexes were investigated by Z-scan techniques in DMF solution, and all of them exhibited both NLO absorption and self-defocusing effect. The corresponding effective NLO susceptibilities |3 | of the complexes are 2.39 × 10-12–5.80 × 10-12 esu.  相似文献   

13.
The tri­chloro‐bridged dinuclear RuII complex tri‐μ‐chloro‐bis{[1,1,1‐tris­(di­phenyl­phosphino­methyl)­ethane‐κ3P,P′,P′′]ruthenium(II)} hexa­fluoro­phosphate ethanol solvate, [Ru2Cl3(tripod)2]PF6·C2H6O, containing the tripod [1,1,1‐tris­(di­phenyl­phosphino­methyl)­ethane, C41H39P3] ligand, was unexpectedly obtained from the reaction of [RuIIICl3(tripod)] with 1,4‐bis­(di­phenyl­phosphino)­butane (dppb), followed by pre­cipitation with NH4PF6. The magnetic moment of the compound at room temperature indicates that the dinuclear [Ru2(μ‐Cl)3(tripod)2]+ cation is diamagnetic. A single‐crystal X‐ray structure determination revealed that the two Ru atoms are bridged by the three Cl atoms. The coordination sphere of each Ru atom is completed by the three P atoms of a tripod ligand. The two P3Ru units are exactly eclipsed, while the bridging Cl atoms are staggered with respect to the six P atoms. The Ru⋯Ru distance is 3.3997 (7) Å and the mean Cl—Ru—Cl bond angle is 77.7°.  相似文献   

14.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

15.
Applications of laser flash photolysis techniques are illustrated using three specific cases among many photoprocesses involving transition metal polypyridyl complexes (LL = bpy, phen or related ligands): dynamics of photoinduced formation of complexes of the type M(CO)4(LL), where M = Mo0, Cr0 or W0; dynamics of photosubstitution reactions of Ru(LL) 3 2 + and photoredox reactions of MLCT excited states of RuII(LL) 3 2+ and [ReI(CO)3(Cl)(LL)].  相似文献   

16.
Summary Reactions of ruthenium carbonyl complexes of the type [RuX2(CO)(Ph2RAs)3] (X=Cl or Br; R=Me or Et) with 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen) in alcohol produce orange red cationic products of the formula [RuX(CO)(N-N)(Ph2RAs)2]ClO4 (N-N=bipy or phen). Likewise, the hydridocarbonyls of ruthenium and osmium of the type [MHX(CO)(Ph2RAs)3] (M=Ru or Os) react with bipy and phen to yield yellow cationic complexes of the composition [(MH(CO)(N-N)(Ph2RAs)2]ClO4. Structures have been assigned to all the complexes on the basis of i.r. and1 H n.m.r. spectral data.  相似文献   

17.
DFT calculations are performed on [RuII(bpy)2(tmen)]2+ ( M1 , tmen=2,3‐dimethyl‐2,3‐butanediamine) and [RuII(bpy)2(heda)]2+ ( M2 , heda=2,5‐dimethyl‐2,5‐hexanediamine), and on the oxidation reactions of M1 to give the C?C bond cleavage product [RuII(bpy)2(NH=CMe2)2]2+ ( M3 ) and the N?O bond formation product [RuII(bpy)2(ONCMe2CMe2NO)]2+ ( M4 ). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [RuII(bpy)2(tmen)]2+ ( M1 ) can undergo oxidative deprotonation to generate Ru‐bis(imide) [Ru(bpy)2(tmen‐4 H)]+ ( A ) or Ru‐imide/amide [Ru(bpy)2(tmen‐3 H)]2+ ( A′ ) intermediates. Both A and A′ are prone to C?C bond cleavage, with low reaction barriers (ΔG) of 6.8 and 2.9 kcal mol?1 for their doublet spin states 2 A and 2 A′ , respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on 2 A′ is relatively high (14.2 kcal mol?1). These calculation results are in agreement with the formation of the RuII‐bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with CeIV in aqueous solution to afford the RuII‐dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI‐MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.  相似文献   

18.
A series of octahedral RuII/RuIII complexes of the type [Ru(Y)(CO)(BAX)(PPh3)2] and [RuCl2(BAX)(PPh3)2] (Y = H or Cl; BAX = benzaldehydeacetylhydrazone anion; X = H, Me, OMe, OH, Cl or NO2) have been prepared and characterised by spectral, magnetic and cyclic voltammetric studies. The RuII complexes are low spin diamagnetic (S = 0) whereas the RuIII complexes are low spin and paramagnetic (S = 1/2). These RuII and RuIII complexes absorb in the visible region respectively at ca. 16,000 and 28,000 cm–1 which bands are assigned to the MLCT. The correlation of the max values of the RuIII complexes with the + Hammett parameter, is linear, indicating the profound effect of substituents on the electron density of the central metal. I.r. spectral data reveals that the hydrazone is chelated to ruthenium through the hydrazinic nitrogen and the deprotonated enolic oxygen. The rhombic nature of the e.s.r. spectra of the RuIII complexes indicates an asymmetry in the electronic environment around the Ru atom. RuII complexes in CH2Cl2 show an irreversible RuII/III redox couple at ca. 0.9–0.5 V, while the RuIII complexes show two reversible redox couples in the –0.1–0.1 and 0.8–0.6 V range, indicating that the higher oxidation state of ruthenium is stabilised by hydrazones.  相似文献   

19.
The 1:2 adduct lead(II) complexes with 1, 10‐phenanthroline (phen) containing three different anions, [Pb(phen)2(CH3COO)X] (X=NCS, NO3 and ClO4), have been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The structure of [Pb(phen)2(CH3COO)(ClO4)] was determined by single crystal X‐ray analysis. The Pb atom of the monomeric complex is coordinated by four nitrogen atoms of two 1, 10‐phenanthroline ligands and two oxygen atoms of the acetate ligand to form an irregular octahedron. The arrangement of the 1, 10‐phenanthroline and acetate ligands, exhibits a coordination gap around the PbII ion, possibly occupied by a stereochemical electron active lone pair on lead(II), which results in a hemidirected lead compound. The π‐π stacking interaction between the parallel aromatic rings may help to increase the coordination ‘gap’ around the PbII ion.  相似文献   

20.
Ruthenium(II) Phthalocyanines: Preparation and Properties of Di(halo)phthalocyaninatoruthenate(II) [Ru(Py)2Pc2?] reacts with molten (nBu4N)X forming stable, green (nBu4N)2[Ru(X)2Pc2?] (X = Cl, Br). The cyclovoltammogram shows a quasireversible redoxprocess for the metal oxidation at E1/2(I) = ?0.02 V (X = Cl) resp. 0.05 V (X = Br) and for the first ringoxidation at E1/2(II) = 0.70 V. The typical π-π*-transitions (B < Q < N) of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. With respect to RuIII phthalocyanines B is shifted significantly to higher, Q, N to lower energy. The strong extra-band at 24.2 kK is diagnostic for these RuII phthalocyanines. The vibrational spectra are typical for the Pc2? ligand with D4h symmetry, too, and bands at 513, 909, 1 171 und 1 329 cm?1 in the m.i.r. spectrum are specific for hexa-coordinated low spin RuII. In the Raman spectrum with excitation at ~480 nm the intensity of the totally symmetrical Ru? X stretching vibration at 266 cm?1 (X = Cl) resp. 168 cm?1 (X = Br) together with a progression of up to three overtones is selectively resonance Raman enhanced. The asymmetrical Ru? X stretching vibration is observed in the f.i.r. spectrum at 272 cm?1 (X = Cl) resp. 215 cm?1 (X = Br).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号