首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

2.
The 1:1:2 mixture of Ln(hfac)3, Zn(hfac)2, and NIT‐Pyrim (hfac = hexafluoroacetylacetonate, NIT‐Pyrim = 2‐pyrimidine‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide) afforded a series of 2p‐3d‐4f magnetic chains [Ln(hfac)3Zn(hfac)2(NIT‐Pyrim)2] [LnIII = Gd ( 1 ), Ho ( 2 ), Yb ( 3 )], in which Zn(hfac)2 and Ln(hfac)3 units are bridged by pyrimidine substituted nitronyl nitroxides through their NO moieties and pyrimidine nitrogen atoms. These complexes represent the first examples of 2p‐3d‐4f complexes with ZnII ions. Magnetic studies show that there exist ferromagnetic exchange couplings between the coordinated NO groups of radical ligands and the GdIII ions.  相似文献   

3.
Three unprecedented nitronyl nitroxide radical‐bridged 3d–4f clusters, [Ln2Cu2(hfac)10(NIT‐3py)2(H2O)2](LnIII=Y, Gd, Dy), have been obtained from the self‐assembly of Ln(hfac)3, Cu(hfac)2, and the radical ligand. The Dy complex shows a slow relaxation of magnetization, representing the first nitronyl nitroxide radical‐based 3d–4f cluster with single‐molecule magnet behavior.  相似文献   

4.
Two new lanthanide–radical complexes, [Tb(hfac)3(EtVNIT)2] (1) and [Dy(hfac)3(EtVNIT)2] (2) (EtVNIT?=?2-(4′-ethoxy-3′-methoxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, hfac?=?1,1,1,5,5,5-hexafluoroacetylacetonate), were synthesized; both display radical–Ln(III)–radical (Ln=Tb (1), Dy (2)) tri-spin structures. Magnetic studies reveal that interactions between the lanthanide ions and radicals are ferromagnetic.  相似文献   

5.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

6.
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization.  相似文献   

7.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

8.
A series of heteropentanuclear oxalate‐bridged Ru(NO)‐Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ‐ox)(NO)}4], where Ln=Y ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] ( 1 ) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1 , 2 , and 5 were in addition analyzed by X‐ray crystallography, 1 by Ru K‐edge XAS and 1 and 2 by 13C NMR spectroscopy. X‐ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2? are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ‐ox)(NO)}4]5? (Ln=Y, Dy). While YIII is eight‐coordinate in 2 , DyIII is nine‐coordinate in 5 , with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium‐lanthanide complexes 2 – 5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC‐5) and compared with those obtained for the previously reported Os(NO)‐Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 )). Complexes 2 – 5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6 – 9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP‐MS data, indicating five‐ to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.  相似文献   

9.
The reaction of lanthanide(III) nitrates with 4‐(pyridin‐2‐yl)methyleneamino‐1,2,4‐triazole (L) was studied. The compounds [Ln(NO3)3(H2O)3] ? 2 L, in which Ln=Eu ( 1 ), Gd ( 2 ), Tb ( 3 ), or Dy ( 4 ), obtained in a mixture of MeCN/EtOH have the same structure, as shown by XRD. In the crystals of these compounds, the mononuclear complex units [Ln(NO3)3(H2O)3] are linked to L molecules through intermolecular hydrogen‐bonding interactions to form a 2D polymeric supramolecular architecture. An investigation into the optical characteristics of the Eu3+‐, Tb3+‐, and Dy3+‐containing compounds ( 1 , 3 , and 4 ) showed that these complexes displayed metal‐centered luminescence. According to magnetic measurements, compound 4 exhibits single‐ion magnet behavior, with ΔEeff/kB=86 K in a field of 1500 Oe.  相似文献   

10.
Compounds [Fe3Ln(tea)2(dpm)6] ( Fe3Ln ; Ln= Tb–Yb, H3tea=triethanolamine, Hdpm=dipivaloylmethane) were synthesized as lanthanide(III)‐centered variants of tetrairon(III) single‐molecule magnets (Fe4) and isolated in crystalline form. Compounds with Ln=Tb–Tm are isomorphous and show crystallographic threefold symmetry. The coordination environment of the rare earth, given by two tea3? ligands, can be described as a bicapped distorted trigonal prism with D3 symmetry. Magnetic measurements showed the presence of weak ferromagnetic Fe ??? Ln interactions for derivatives with Tb, Dy, Ho, and Er, and of weak antiferromagnetic or negligible coupling in complexes with Tm and Yb. Alternating current susceptibility measurements showed simple paramagnetic behavior down to 1.8 K and for frequencies reaching 10000 Hz, despite the easy‐axis magnetic anisotropy found in Fe3Dy , Fe3Er , and Fe3Tm by single‐crystal angle‐resolved magnetometry. Relativistic quantum chemistry calculations were performed on Fe3Ln (Ln=Tb–Tm): the ground J multiplet of Ln3+ ion is split by the crystal field to give a ground singlet state for Tb and Tm, and a doublet for Dy, Ho, and Er with a large admixture of mJ states. Gyromagnetic factors result in no predominance of gz component along the threefold axis, with comparable gx and gy values in all compounds. It follows that the environment provided by the tea3? ligands, though uniaxial, is unsuitable to promote slow magnetic relaxation in Fe3Ln species.  相似文献   

11.
New copper(II) complexes of the hydrazone ligands H2salhyhb, H2salhyhp, and H2salhyhh, derived from salicylaldehyde and ω‐hydroxy carbonic acid hydrazides, have been synthesized and physically characterized. Two fundamental structures were found in solid state depending on the pH‐value of the reaction solution. Acidic conditions lead to the formation of the di‐μ‐phenoxo‐bridged dicationic complex dimers [{Cu(Hsalhyhb)}2]2+ ( 1a ), [{Cu(Hsalhyhp)}2]2+ ( 2a ), and [{Cu(Hsalhyhh)}2]2+ ( 3a ), isolated as perchlorate salts. The dimeric complexes show strong antiferromagnetic coupling with J = ?399 ( 1a ), ?410 ( 2a ), and ?311 cm?1 ( 3a ). Higher pH‐values resulted in the aggregation of neutral copper ligand fragments to the one‐dimensional coordination polymers [{Cu(salhyhb)}n] ( 1b ), [{Cu(salhyhp)}n] ( 2b ), and [{Cu(salhyhh)}n] ( 3b ). 3b has been examined by means of X‐ray crystallography and represents the first example of a structurally characterized neutral copper(II) N‐salicylidenehydrazide complex without additional ligands. The magnetic interactions in the polymers are also antiferromagnetic with J = ?125 ( 1b ), ?136 ( 2b ), and ?148 cm?1 ( 3b ), but strongly reduced compared to the corresponding dimeric complexes. The two basic structure types can be reversibly interconverted simply by pH‐control.  相似文献   

12.
Double‐decker complexes of lanthanide cations can be readily prepared with tetraazaporphyrins (porphyrazines). We have synthesized and characterized a series of neutral double‐decker complexes [Ln(OETAP)2] (Ln=Tb3+, Dy3+, Gd3+, Y3+; OETAP=octa(ethyl)tetraazaporphyrin). Some of these complexes show analogous magnetic features to their phthalocyanine (Pc) counterparts. The Tb3+ and Dy3+ derivatives exhibit single‐molecule magnet (SMM) behavior with high blocking temperatures over 50 and 10 K, respectively. These results confirm that, in double‐decker complexes that involve Tb or Dy, the (N4)2 square antiprism coordination mode has an important role in inducing very large activation energies for magnetization reversal. In contrast with their Pc counterparts, the use of tetraazaporphyrin ligands endows the presented [Ln(OETAP)2] complexes with extraordinary chemical versatility. The double‐decker complexes that exhibit SMM behavior are highly soluble in common organic solvents, and easily processable even through sublimation.  相似文献   

13.
Two pairs of Ni(2)Dy(2) and Ni(2)Tb(2) complexes, [Ni(2)Ln(2)(L)(4)(NO(3))(2)(DMF)(2)] {Ln = Dy (1), Tb (2)} and [Ni(2)Ln(2)(L)(4)(NO(3))(2)(MeOH)(2)]·3MeOH {Ln = Dy (3), Tb (4)} (H(2)L is the Schiff base resulting from the condensation of o-vanillin and 2-aminophenol) possessing a defect-dicubane core topology were synthesized and characterized. All four complexes are ferromagnetically coupled, and the two Dy-analogues are found to be Single Molecule Magnets (SMMs) with energy barriers in the range 18-28 K. Compound 1 displays step-like hysteresis loops, confirming the SMM behavior. Although 1 and 3 show very similar structural topologies, the dynamic properties of 1 and 3 are different with blocking temperatures (3.2 and 4.2 K at a frequency of 1500 Hz) differing by 1 K. This appears to result from a change in orientation of the nitrate ligands on the Dy(III) ions, induced by changes in ligands on Ni(II).  相似文献   

14.
Reaction of DyCl3 with two equivalents of NaN(SiMe3)2 in THF yielded {Dy(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 1 ). X‐ray crystal structure analysis revealed that 1 is a centrosymmetric dimer with asymmetrically bridging chloride ligands. The metal coordination arrangement can be best described as distorted trigonal bipyramid. The bond lengths of Ln–Cl and Ln–N showed a decreasing trend with the contraction of the size of Ln3+. Treatment of N,N‐bis(pyrrolyl‐α‐methyl)‐N‐methylamine (H2dpma) with 1 and known compound {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2, respectively, led to the formations of [Dy(μ‐Cl)(dpma)(THF)2]2 ( 2 ) and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 3 ). Compounds 2 and 3 were fully characterized by single‐crystal X‐ray crystallography, elemental analysis, and 1H NMR spectroscopy. Structure determination indicated that 2 and 3 exhibit as centrosymmetric dimers with asymmetrically bridging chloride ligands. One pot reactions involving LnCl3 (Ln = Dy and Yb), LiN(SiMe3)2, and H2dpma were explored and desired products 2 and 3 were not yielded, which indicated that 1 and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 are the demanding precursors to synthesize Dysprosium and Ytterbium complexes supported by dpma2– ligand. Compounds 2 and 3 are the first reported lanthanide complexes chelated by dpma2– ligand.  相似文献   

15.
The magnetic interactions in a new series of isostructural imino nitroxide radical lanthanide(III) complexes, [Ln(hfac)3(IM2py)] (Ln = Gd–Yb: IM2py = 2-(2′-pyridyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazoline-1-oxy; hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), are examined by considering the intrinsic paramagnetic contribution of the Ln(III) ion from the corresponding [Ln(hfac)3(pybzim)] with a diamagnetic pybzim(2-(2-pyridyl)benzimidazole) ligand; the Ln(III)–IM2py interaction being antiferromagnetic for the 4f7 to 4f13 Ln(III) complexes and negligibly small for the other complexes. This series is the first example reverse to the previous cases for the series of Ln–Cu or Ln–aminoxyl(NIT) radical (4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazoline-3-oxide-1-oxy) complexes, other than only a few examples of semiquinone Ln complexes. This reverse nature of the magnetic interaction, as compared with the NIT complexes, validates the empirical approach by O. Kahn et al. [Inorg. Chem. 38 (1999) 3692; J. Am. Chem. Soc. 122 (2000) 3413] in the spin-coupled systems for a series of Ln(III) complexes.  相似文献   

16.
A series of Ln‐sulfoterephthalate coordiantion polymers, namely, [Ln(2‐stp)(4,4′‐bbpi) (H2O)2] · H2O [Ln = Eu ( 1 ), Tb ( 2 ), Dy ( 3 )] (2‐H3stp = 2‐sulfoterephthalate; 4,4′‐bbpi = 4,4′‐bisbiphenyl‐imidazole), were prepared by hydrothermal method and characterizatied by EA, IR, TGA, and PXRD technologies. Single crystal X‐ray diffraction analyses show that the three complexes are isostructral two‐dimensional network featuring helical chain structures. The fluorescence studies show that the emissions of the coordination polymers exhibit the characteristic peaks of lanthanide ions, which means they could be potential fluorescence materials.  相似文献   

17.
Tuning the magnetic anisotropy of metal ions remains highly interesting in the design of improved single‐molecule magnets (SMMs). We herein report synthetic, structural, magnetic, and computational studies of four mononuclear CoII complexes, namely [Co(hfac)2(MeCN)2] ( 1 ), [Co(hfac)2(Spy)2] ( 2 ), [Co(hfac)2(MBIm)2] ( 3 ), and [Co(hfac)2(DMF)2] ( 4 ) (MeCN=acetonitrile, hfac=hexafluoroacetylacetone, Spy=4‐styrylpyridine, MbIm=5,6‐dimethylbenzimidazole, DMF=N,N‐dimethylformamide), with distorted octahedral geometry constructed from hexafluoroacetylacetone (hfac) and various axial ligands. By a building block approach, complexes 2 – 4 were synthesized by recrystallization of the starting material of 1 from various ligands containing solution. Magnetic and theoretical studies reveal that 1 – 4 possess large positive D values and relative small E parameters, indicating easy‐plane magnetic anisotropy with significant rhombic anisotropy in 1 – 4 . Dynamic alternative current (ac) magnetic susceptibility measurements indicate that these complexes exhibit slow magnetic relaxation under external fields, suggesting field‐induced single‐ion magnets (SIMs) of 1 – 4 . These results provide a promising platform to achieve fine tuning of magnetic anisotropy through varying the axial ligands based on Co(II) bis(hexafluoroacetylacetonate) complexes.  相似文献   

18.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

19.
Two zwitterionic‐type ligands featuring π–π* and intraligand charge‐transfer (ILCT) excited states, namely 1,1′‐(2,3,5,6‐tetramethyl‐1,4‐phenylene)bis(methylene)dipyridinium‐4‐olate (TMPBPO) and 1‐dodecylpyridin‐4(1 H)‐one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand‐direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide‐band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln3+ ions were observed to cover the visible to near‐infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single‐component white light was achieved by preparation of solid solutions of the ternary systems Gd‐Eu‐Tb (for TMPBPO) and La‐Eu‐Tb and La‐Dy‐Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm3+ (3H4) and Yb3+ (2F5/2) decay dynamics, which has not been explored before for their coordination complexes.  相似文献   

20.
The TTTA ? Cu(hfac)2 polymer ( 1 ; in which TTTA=1,3,5‐trithia‐2,4,6‐triazapentalenyl, and hfac=(1,1,1,5,5,5)‐hexafluoroacetylacetonate) is one of the most prominent examples of the rational use of the ‘metal–radical’ synthetic approach to achieve ferromagnetic interactions. Experimentally, the magnetic topology of 1 could not be fully deciphered. Herein, the first‐principles bottom‐up procedure was applied to elucidate the nature and strength of the magnetic JAB exchange interactions present in 1 . The computed JAB values give rise to a 2D magnetic topology of ferromagnetic dimers (+11.9 cm?1) coupled through weaker antiferromagnetic interactions (?3.0 and ?3.2 cm?1) in two different spatial directions. The hitherto unknown origin of the antiferromagnetic interdimer interactions is thus unveiled. By using the 2D magnetic topology, the agreement between calculated and experimental χT(T) data is extraordinary. In the metal–radical TTTA ? Cu(hfac)2 compound, the computational model transcends the local dimer cluster model owing to strong interactions between metal centers and organic radicals, thereby creating a de facto biradical. In addition, it is shown that the magnetic topology cannot be inferred from the polymeric [TTTA ??? Cu(hfac)2]n crystal motif, that is, from its chemical coordination pattern. Instead, one should think in terms of magnetic building blocks, namely, the de facto biradicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号