首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
New chiral binaphthyl‐containing polyfluorene (PF) derivatives, PFOH , PFMOM , and PFP , bearing different binaphthyl units ((S)‐2,2′‐bis(methoxymethoxy)‐1,1′‐binaphthyl for PFMOM , (S)‐1,1′‐binaphthyl‐2,2′‐diol for PFOH , and (S)‐2,2′‐bis(diphenylphosphinyl)‐1,1′‐binaphthyl for PFP ) in the backbone have been designed and synthesized through Pd‐catalyzed Suzuki polycondensation. Their properties have been investigated in detail by 1H NMR, 13C NMR, TGA, DSC, UV–vis, photoluminescence (in solutions, in thin films before and after annealing), and circular dichroism (CD) spectroscopic methods compared with poly(9,9‐dihexylfluorene‐2,7‐diyl) ( PF ). The resulting copolymers possessed excellent solubility in organic solvents and emitted strong blue light. The phosphine oxide‐containing copolymers PFP and PFMOM exhibited higher quantum yields and better thermal spectral stability in comparison with PF . All the copolymers exhibited obviously the linearly polarized photoluminescent properties both in solutions and in solid states. High emission polarization ratios (RPL) of PFP were observed with no obvious decrease upon thermal annealing. In addition, investigation of the CD spectroscopic properties of these copolymers in THF solutions indicated that the chirality of the binaphthyls could be transferred to the whole PF backbone. All these results demonstrated that introduction of the chiral binaphthyls, particularly BINAPO, into the backbone could effectively improve the performances of the copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Poly[(S)‐3‐vinyl‐2,2′‐dihydroxy‐1,1′‐binaphthyl] (L*) was obtained by taking off the protecting groups of poly[(S)‐3‐vinyl‐2,2′‐bis(methoxymethoxy)‐1,1′‐binaphthyl] (poly‐ 1 ). L* was proved to keep a stable helical conformation in solution. The application of helical L* in the asymmetric addition of diethylzinc to aldehydes has been studied. The catalytic system employing 10 mol% of L* and 150 mol% of Ti(OiPr)4 was found to promote the addition of diethylzinc to a wide range of aromatic aldehydes, giving up to 99% enantiomeric excess (ee) and up to 93% yield of the corresponding secondary alcohol at 0°C. The chiral polymer can be easily recovered and reused without loss of catalytic activity as well as enantioselectivity.  相似文献   

3.
The title compound and its corresponding etheno‐ and ethano‐bridged compounds were successfully synthesized in enantiomerically pure form by McMurry coupling of 2,2′‐dimethoxy‐(R)‐ or ‐(S)‐1,1′‐binaphthyl‐6,6′‐dicarbaldehydes as the key reaction. The reaction proceeded in a highly diastereoselective manner; the reaction of the racemic dialdehyde did not afford the meso coupling product but gave only the racemic one in poor yield. The diyne crystallized in the chiral monoclinic space group P21 from toluene/hexane. Structural analysis reveals that it has a considerably twisted double‐helical structure in crystal form. The spectral properties (NMR, UV/Vis, and CD) clearly indicate the highly strained nature of the molecule. In particular, its UV/Vis and CD spectra exhibit a bathochromic shift of about 20 nm for the naphthyl π–π* transitions.  相似文献   

4.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
It is a challenging issue to achieve propeller chirality for triarylboranes owing to the low transition barrier between the P and M forms of the boron center. Herein, we report a new strategy to achieve propeller chirality of triarylboranes. It was found that the chirality relay from axially chiral 1,1′‐binaphthyl to propeller chirality of the trivalent boron center can be realized when a Me2N and a Mes2B group (Mes=mesityl) are introduced at the 2,2′‐positions of the 1,1′‐binaphthyl skeleton ( BN‐BNaph ) owing to the strong π–π interaction between the Me2N‐bonded naphthyl ring and the phenyl ring of one adjacent Mes group, which not only exerts great steric hindrance on the rotation of the two Mes groups but also gives unequal stability to the two configurations of the boron center for a given configuration of the binaphthyl moiety. The stereostructures of the boron center were fully characterized through 1H NMR spectroscopy, X‐ray crystal analyses, and theoretical calculations. Detailed comparisons with the analog BN‐Ph‐BNaph , in which the Mes2B group is separated from 1,1′‐binaphthyl by a para‐phenylene spacer, confirmed the essential role of π–π interaction for the successful chirality relay in BN‐BNaph .  相似文献   

6.
The asymmetric polymerization of 4′‐isocyanatobenzo‐18‐crown‐6 with the lithium amide of (S)‐(2‐methoxymethyl)pyrrolidine successfully proceeded to afford end‐functionalized poly(4′‐isocyanatobenzo‐18‐crown‐6) with (S)‐(2‐methoxymethyl)pyrrolidine (polymer 2 ). In the circular dichroism (CD) spectrum of 2 , a clear positive Cotton effect was observed in the range of 240–350 nm corresponding to the absorption of the polymer backbone, indicating that 2 partially formed a one‐handed helical structure, which was preserved by the chirality of (S)‐(2‐methoxymethyl)pyrrolidine bonding to the terminal end in 2 . In the titration experiments for the CD intensity of 2 in the presence of D ‐ and L ‐Phe·HClO4 (where Phe is phenylalanine), a small but remarkable difference was observed in the amount of the chiral guest needed for saturation of the CD intensity and in the saturated CD intensity, indicating that the extremely stable, one‐handed helical part should exist in the main chain of 2 , which was not inverted even when the unfavorable chiral guest for the predominant helical sense, L ‐Phe·HClO4, was added. In addition, helical polymer 2 exhibited a chiral discrimination ability toward racemic guests; that is, the guests were extracted from the aqueous phase into the organic phase with enantiomeric excess. The driving force of the chiral discrimination ability of 2 should certainly be attributed to the one‐handed helical structure in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 325–334, 2006  相似文献   

7.
Stereomutation of a BIPHEP/RuCl 2 /diamine complex (shown schematically) is possible because of the conformational flexibilty of BIPHEP ligands. The result is an asymmetric activation in the Ru‐catalyzed hydrogenation of carbonyl compounds to optically active alcohols. Whereas a racemic BINAP/RuCl2 complex with a chiral diamine activator gives a 1:1 mixture of two diastereomers, unequal amounts of the diastereomers can be produced from a BIPHEP/RuCl2 complex and a chiral diamine. Ar=3,5‐dimethylphenyl, BINAP=2,2′‐bis(diphenylphosphanyl)‐1,1′‐binaphthyl, BIPHEP=2,2′‐bis(diarylphosphanyl)biphenyl.  相似文献   

8.
A novel 1D copper(II) helical chain is constructed through the connection of tetranuclear copper(II) units [Cu4(L)(Py)4] (H8L=N,N′‐(BINOL‐3,3′‐dicarboxyl)‐disalicylhydrazide, where BINOL is 1,1′‐binaphthalenyl‐2,2′‐diol, py=pyridine) by weak coordination‐driven self‐assembly, and characterized by IR, single crystal X‐ray diffraction, thermogravimetric analysis, and X‐ray power diffraction analysis. Interestingly, the helical chains are packed in an alternating left‐(M) and right‐handed (P) chirality, the orientation of the helices was determined by the axial chirality of the ligand. The complex shows antiferromagnetic interactions between the copper centers.  相似文献   

9.
Chiral conjugated polymers P‐1 and P‐2 were synthesized by the polymerization of (S)‐3,3′‐diiodo‐2,2′‐bisbutoxy‐1,1′‐binaphthyl and (S)‐6,6′‐dibromo‐2,2′‐bisbutoxy‐1,1′‐binaphthyl, respectively, with 5,5′‐divinyl‐2,2′‐bipyridine through a Heck cross‐coupling reaction. Chiral polymer complexes P‐C‐1 and P‐C‐2 were obtained by the bipyridine chelating coordination of P‐1 and P‐2 with Eu(TTA)3·2H2O (where TTA is 2‐thenoyltrifluoroacetonate). Polymers P‐1 and P‐2 and polymer complexes P‐C‐1 and P‐C‐2 exhibited intense circular dichroism signals, with negative and positive Cotton effects in their circular dichroism spectra. The chiral polymers showed strong green‐blue fluorescence because of the efficient energy migration from the extended π‐electronic structure of the conjugated polymer main to the chiral binaphthyl core. The chiral polymer complexes could have not only polymer fluorescence but also the characteristic fluorescence of Eu(III) (5D07F2) at a different excited wavelength. These kinds of chiral polymer complexes incorporating polybinaphthyls, bipyridine, and Eu(III) moieties are expected to provide an understanding of the relationship between the structure and properties of chiral polymer complexes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 650–660, 2007  相似文献   

10.
A novel, cistransoidal poly‐(phenylacetylene) bearing a carboxybiphenyl group as the pendant (poly‐ 1 ) was prepared by polymerization of (4′‐ethoxycarbonyl‐4‐biphenylyl)acetylene with a rhodium catalyst followed by hydrolysis of the ester groups. Upon complexation with various chiral amines and amino alcohols in dimethyl sulfoxide (DMSO), the polymer exhibited characteristic induced circular dichroism (ICD) in the UV/Vis region due to the predominantly one‐handed helix formation of the polymer backbone as well as an excess of a single‐handed, axially twisted conformation of the pendant biphenyl group. Poly‐ 1 complexed with (R)‐2‐amino‐1‐propanol showed unique time‐dependent inversion of the macromolecular helicity. Furthermore, the preferred‐handed helical conformation of poly‐ 1 induced by a chiral amine was further “memorized” after the chiral amine was replaced with achiral 2‐aminoethanol or n‐butylamine in DMSO. In sharp contrast to the previously reported memory in poly((4‐carboxyphenyl)acetylene), the present helicity memory of poly‐ 1 was accompanied by memory of the twisted biphenyl chirality in the pendants. Unprecedentedly, the helicity memory of poly‐ 1 with achiral 2‐aminoethanol was found to occur simultaneously with inversion of the axial chirality of the biphenyl groups followed by memory of the inverted biphenyl chirality, thus showing a significant change in the CD spectral pattern.  相似文献   

11.
New advances into the chirality effect in the self‐assembly of block copolymers (BCPs) have been achieved by tuning the helicity of the chiral‐core‐forming blocks. The chiral BCPs {[N?P(R)‐O2C20H12]200?x[N?P(OC5H4N)2]x}‐b‐ [N?PMePh]50 ((R)‐O2C20H12=(R)‐1,1′‐binaphthyl‐2,2′‐dioxy, OC5H4N=4‐pyridinoxy (OPy); x=10, 30, 60, 100 for 3 a – d , respectively), in which the [N?P(OPy)2] units are randomly distributed within the chiral block, have been synthesised. The chiroptical properties of the BCPs ([α]D vs. T and CD) demonstrated that the helicity of the BCP chains may be simply controlled by the relative proportion of the chiral and achiral (i.e., [N?P(R)‐O2C20H12] and [N?P(OPy)2], respectively) units. Thus, although 3 a only contained only 5 % [N?P(OPy)2] units and exhibited a preferential helical sense, 3 d with 50 % of this unit adopted non‐preferred helical conformations. This gradual variation of the helicity allowed us to examine the chirality effect on the self‐assembly of chiral and helical BCPs (i.e., 3 a – c ) and chiral but non‐helical BCPs (i.e., 3 d ). The very significant influence of the helicity on the self‐assembly of these materials resulted in a variety of morphologies that extend from helical nanostructures to pearl‐necklace aggregates and nanospheres (i.e., 3 b and 3 d , respectively). We also demonstrate that the presence of pyridine moieties in BCPs 3 a – d allows specific decoration with gold nanoparticles.  相似文献   

12.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

13.
By introducing slight structural modifications to a D4‐symmetric coordination capsule, we succeeded in isolating the nearly enantiopure capsules (P)‐ and (M)‐ 2 a (BF4)4. Chiral guest, dibenzyl 4,4′‐diacetoxy‐6,6′‐dimethyl‐[1,1′‐biphenyl]‐2,2′‐dicarboxylate ( 3 ) was encapsulated within the dissymmetric cavity of 2 a (BF4)4, resulting in a high diastereoselectivity of >99 % de. The encapsulated guest was successfully removed from the complex without racemization through precipitation of the empty capsule. CD spectra confirmed that the chirality of the capsule was maintained in THF and 1,4‐dioxane for long periods, whereas a small amount of acetonitrile accelerated racemization of the empty capsule. The activation parameters of the racemization reaction were determined in dichloromethane and 1,2‐dichloroethane, resulting in positive enthalpic contributions and large negative entropic contributions, respectively. Accordingly, the racemization fits a first‐order kinetic model. Mechanically coupled Cu+‐2,2′‐bipyridine coordination centers were responsible for the high‐energy barrier of racemization and led to the unique chiral memory of the dissymmetric cavity, which was turned off by the addition of acetonitrile.  相似文献   

14.
Axially chiral, N‐arylated 3,5‐dihydro‐4H‐dinaphtho[2,1‐c:1′,2′‐e]azepines have been prepared by short synthetic protocols from enantiopure 1,1′‐bi(2,2′‐naphthol) (BINOL) and anilines. Alkynes substituted with two N‐phenyldinaphthazepine donors readily undergo a formal [2+2] cycloaddition, followed by retro‐electrocyclization, with tetracyanoethene (TCNE) to yield donor‐substituted 1,1,4,4‐tetracyanobuta‐1,3‐dienes (TCBDs) featuring intense intramolecular charge‐transfer (CT) interactions. A dicyanovinyl derivative substituted with one N‐phenyldinaphthazepine donor was obtained by a “one‐pot” oxidation/Knoevenagel condensation from the corresponding propargylic alcohol. Comparative electrochemical, X‐ray crystallographic, and UV/Vis studies show that the electron‐donor qualities of N‐phenyldinaphthazepine are similar to those of N,N‐dimethylanilino residues. The circular dichroism (CD) spectrum of a push–pull chromophore incorporating the chiral donor moiety features Cotton effects of exceptional intensity. With their elongated shape and the rigidity of the chiral N‐aryldinaphthazepine donors, these chromophores are effective inducers of twist distortion in nematic liquid crystals (LCs). Thus, a series of the dinaphthazepine derivatives was used as dopants in the nematic LC E7 (Merck) and high helical twisting powers (β) of the order of hundreds of μm?1 were measured. Theoretical calculations were employed to elucidate the relation between the structure of the dopants and their helical twisting power. For the derivatives with two dinaphthazepine moieties, a strong dependence of the β‐values on the structure and conformation of the linker between them was found.  相似文献   

15.
Wholly aromatic polymers with various helical structures were prepared through the combination of two axially dissymmetric bifunctional compounds. The palladium-catalyzed condensation of (R)-2,2-diethoxy-6,6′-dibromo-1,1′-binaphthyl with (R)-1,1′-binaphthyl-2,2′-diamine and the reaction of (S)-2,2-diethoxy-6,6′-dibromo-1,1′-binaphthyl with (S)-1,1′-binaphthyl-2,2′-diamine produced helical polyamines, and the chiral conformation was confirmed by their circular dichroism spectra and large specific rotations. The combination of (R)-2,2-diethoxy-6,6′-dibromo-1,1′-binaphthyl and (S)-1,1′-binaphthyl-2,2′-diamine afforded polyamines with a zigzag conformation. The condensation of (R)-2,2′-dimethylbiphenyl-6,6′-dicarbonyl chloride with (R)-2,2′-diamino-6,6′-dimethylbiphenyl and the reaction of (S)-2,2′-dimethylbiphenyl-6,6′-dicarbonyl chloride with (S)-2,2′-diamino-6,6′-dimethylbiphenyl predominantly yielded cyclic dimers and tetramers because of the steric proximity of the reactive groups of the propagating species. The experimental results indicated that the structures of the obtained polymers depended on the combination of the chirality of the bifunctional atropisomeric compounds and the position of the functional groups on the aromatic rings. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4607–4620, 2004  相似文献   

16.
The osmium complexes trans‐[OsCl2(dppf)(diamine)] (dppf: 1,1′‐bis(diphenylphosphino)ferrocene; diamine: ethylenediamine in 3 , propylenediamine in 4 ) were prepared by the reaction of [OsCl2(PPh3)3] ( 1 ) with the ferrocenyl diphosphane, dppf and the corresponding diamine in dichloromethane. The reaction of derivative 3 with NaOCH2CF3 in toluene afforded the alkoxide cis‐[Os(OCH2CF3)2(dppf)(ethylenediamine)] ( 5 ). The novel precursor [Os2Cl4(P(m‐tolyl)3)5] ( 2 ) allows the synthesis of the chiral complexes trans‐[OsCl2(diphosphane)(1,2‐diamine)] ( 6 – 9 ; diphosphane: (R)‐[6,6′‐dimethoxy(1,1′‐biphenyl)‐2,2′‐diyl]bis[1,1‐bis(3,5‐dimethylphenyl)phosphane] (xylMeObiphep) or (R)‐(1,1′‐binaphthalene)‐2,2′‐diylbis[1,1‐bis(3,5‐dimethylphenyl)phosphane] (xylbinap); diamine=(R,R)‐1,2‐diphenylethylenediamine (dpen) or (R,R)‐1,2‐diaminocyclohexane (dach)), obtained by the treatment of 2 with the diphosphane and the 1,2‐diamine in toluene at reflux temperature. Compounds 3 – 5 in ethanol and in the presence of NaOEt catalyze the reduction of methyl aryl, dialkyl, and diaryl ketones and aldehydes with H2 at low pressure (5 atm), with substrate/catalyst (S/C) ratios of 10 000–200 000 and achieving turnover frequencies (TOFs) of up to 3.0×105 h?1 at 70 °C. By employment of the chiral compounds 6 – 9 , different ketones, including alkyl aryl, bulky tert‐butyl, and cyclic ketones, have successfully been hydrogenated with enantioselectivities up to 99 % and with S/C ratios of 5000–100 000 and TOFs of up to 4.1×104 h?1 at 60 °C.  相似文献   

17.
手性高分子P–1由(R)-5,5′-二溴-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘(R–M–1)和5,5′-二乙烯基-2,2′-联吡啶(M–2)通过Pd催化的Heck偶合反应合成得到,高分子配合物P-2和P-3由高分子P-1与Eu(TTA)3·2H2O和Gd(TTA)3·2H2O (TTA– = 2-噻吩甲酰三氟丙酮)反应生成。手性高分子P-1能发射强的蓝色荧光,这是由于手性重复单元(R)-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘和单元2,2′-联吡啶通过亚乙烯基桥连形成共轭高分子结构造成的。在不同的激发波长激发下,含Eu(III)的高分子配合物P–2不仅显示高分子荧光,还可显示Eu(III) (5D0→7F2)特征荧光。含Gd(III)的高分子配合物P–3仅发射高分子荧光。基于高分子及含RE(III)的高分子配合物的荧光性质研究发现,共轭高分子并没有把能量转移到Eu(III)或Gd(III) 配合物部分,只发射它自身的荧光,含Eu(III)的高分子配合物P–2发射Eu(III) (5D0→7F2)特征荧光能量主要来源于配阴离子TTA–。  相似文献   

18.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

19.
A series of novel axially chiral 2,2′‐bipyridine N,N′‐dioxides bearing C1 or C2‐symmetry have been synthesized by the use of enantiopure α‐amino acids as chiral sources. The absolute stereochemistry of the axial chirality of these organocatalysts has been clearly assigned by means of CD measurements together with literature protocols. The reactivities and enantioselectivities of these organocatalysts have been examined in the reactions of aromatic aldehydes with allyltrichlorosilane, thus providing the desired products with moderate yields and enantioselectivies.  相似文献   

20.
An atropisomeric biaryl molecule with a given absolute configuration could present two opposite helical conformations through the rotation around C? C single bond. To the best of our knowledge, the biaryl system is the simplest helical inversion model apart from stereomutation between two enantiomers. Herein, we first report such true helical inversion phenomena of biaryl compounds. Two [MoVIO2(L)]‐type complexes, in which L is a tridentate dioxoanionic pyridine O,N,O‐ligand, are coalesced on the 2,2′,3,3′‐positions of an (R)‐1,1′‐binaphthyl unit and an intramolecular dioxo bridge is formed by two Mo?O???Mo interactions. Exterior strong donors can coordinate to molybdenum to interrupt this dioxo bridge and inversions from negative to positive chirality are explicitly observed by circular dichroism spectroscopy, consistent with single‐crystal X‐ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号