首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Hybrid porphyrin tapes 3 and 4 , consisting of a mixture of 3,5‐di‐tert‐butylphenyl‐substituted donor‐type ZnII–porphyrins and pentafluorophenyl‐substituted acceptor‐type ZnII–porphyrins, were prepared by a synthetic route involving cross‐condensation reaction of a NiII–porphyrinyldipyrromethane and pentafluorophenyldipyrromethane with pentafluorobenzaldehyde followed by appropriate demetalation, remetalation, and oxidative ring‐closure reaction. The NiII‐substituted porphyrin tapes 5 (Ni‐Zn‐Ni) and 6 (Ni‐H2‐Ni) were also prepared through similar routes. The hybrid porphyrin tapes 3 and 4 are more soluble and more stable than normal porphyrin tapes 1 and 2 consisting of only donor‐type ZnII–porphyrins. The solid‐state and crystal packing structures of 3 , 4 , and 5 were elucidated by single‐crystal X‐ray diffraction analysis. Singly mesomeso‐linked hybrid porphyrin arrays 12 and 14 exhibit redox potentials that roughly correspond to each constituent porphyrin segments, while the redox potentials of the hybrid porphyrin tapes 3 and 4 are positively shifted as a whole. The two‐photon absorption (TPA) values of 1–6 were measured by using a wavelength‐scanning open aperture Z‐scan method and found to be 1900, 21 000, 2200, 27 000, 24 000, and 26 000 GM, respectively. These results illustrate an important effect of elongation of π‐electron conjugation for the enhancement of TPA values. The hybrid porphyrin tapes show slightly larger TPA values than the parent ones.  相似文献   

2.
Stable meta‐ and para‐phenylene bridged porphyrin meso‐oxy radical dimers and their NiII and ZnII complexes were synthesized. All the dimers exhibited optical and electrochemical properties similar to the corresponding porphyrin meso‐oxy radical monomers, indicating small electronic interaction between the two spins. Intramolecular spin‐spin interaction through the π‐spacer was determined to be J/kB=?15.9 K for m‐phenylene bridged ZnII porphyrin dimer. The observed weak antiferromagnetic interaction has been attributed to less effective conjugation between the porphyrin radical and linking π‐spacer due to large dihedral angle. In the case of ZnII complexes, both para‐ and meta‐phenylene bridged dimers formed 1D‐chain in solutions and in the solid states through Zn‐O coordination.  相似文献   

3.
A coiled structure of meso‐pentafluorophenyl‐substituted [62]tetradecaphyrin 1 was revealed by X‐ray structural analysis. Synthetic protocols were devised to form mono‐ and bis‐ZnII complexes, 1 Zn and 1 Zn2 , selectively. The former displayed a trigonal‐bipyramidal pentacoordinated ZnII ion as a rare case and a cyclic voltammogram exhibiting eleven reversible redox waves. The latter showed a Ci‐symmetric structure with modest Hückel aromaticity owing to a 62 π‐electronic circuit as the largest aromatic molecule to date.  相似文献   

4.
Directly meso-meso linked porphyrin-tetrabromo[36]octaphyrin-porphyrin hybrid trimer 10 was successfully synthesized via acid-catalyzed condensation reaction and subsequent oxidation. ZnII-metalation of 10 induced transannular meso-meso bond formation to give Möbius aromatic bis-ZnII octaphyrin 11 , which was oxidized by DDQ/Sc(OTf)3 to provide fully conjugated porphyrin-[36]octaphyrin-porphyrin hybrid tape 12 as the first example of porphyrin tape exhibiting Möbius aromaticity. Hybrid tape 12 displays significantly red-shifted absorption and small electrochemical HOMO-LUMO gap, indicating the effective conjugation through the whole chromophores.  相似文献   

5.
Silylation of peripherally lithiated porphyrins with silyl electrophiles has realized the first synthesis of a series of directly silyl‐substituted porphyrins. The meso‐silyl group underwent facile protodesilylation, whereas the β‐silyl group was entirely compatible with standard work‐up and purification on silica gel. The meso‐silyl group caused larger substituent effects to the porphyrin compared with the β‐silyl group. Silylation of β‐lithiated porphyrins with 1,2‐dichlorodisilane furnished β‐to‐β disilane‐bridged porphyrin dimers. A doubly β‐to‐β disilane‐bridged NiII‐porphyrin dimer was also synthesized from a β,β‐dilithiated NiII‐porphyrin and characterized by X‐ray crystallographic analysis to take a steplike structure favorable for interporphyrinic interaction. Denickelation of βsilylporphyrins was achieved upon treatment with a 4‐tolylmagnesium bromide to yield the corresponding freebase porphyrins.  相似文献   

6.
A new class of substituted porphyrins has been developed in which a different number of cyclometalated PtII C^N^N acetylides and polyethylene glycol (PEG) chains are attached to the meso positions of the porphyrin core, which are meant for photophysical, electrochemical, and in vitro light‐induced singlet oxygen (1O2) generation studies. All of these ZnII porphyrin–PtII C^N^N acetylide conjugates show moderate to high (ΦΔ=0.55 to 0.63) singlet oxygen generation efficiency. The complexes are soluble in organic solvents but, despite the PEG substituents, slowly aggregate in aqueous solvent systems. These conjugates also exhibit interesting photophysical properties, including near‐complete photoinduced energy transfer (PEnT) through the rigid acetylenic bond(s) from the PtII C^N^N antenna units to the ZnII porphyrin core, which shows sensitized luminescence, as shown by quenching of PtII C^N^N‐based luminescence. Electrochemical measurements show a set of redox processes that are approximately the sum of what is observed for the PtII C^N^N acetylide and ZnII porphyrin units. UV/Vis spectroscopic properties are supported by DFT calculations.  相似文献   

7.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   

8.
Directly meso‐meso, ββ, ββ triply linked porphyrin arrays are exceptional π‐conjugated molecules exhibiting remarkably red‐shifted absorption bands extending deeply in the IR region. In order to determine the effective conjugated length (ECL), we embarked on the synthesis of the porphyrin tapes far beyond the 12‐mer, which is the longest we have prepared so far. In this study, to find the compromise between the feasibility of the meso‐meso coupling reaction up to longer arrays and the sufficient solubility and chemical stability of the resultant porphyrin tapes, we prepared hybrid meso‐meso linked porphyrin arrays BOn up to 24‐mer, which have two different aryl groups, a 2,4,6‐tris(3,5‐di‐tert‐butylphenoxy) phenyl group (Ar1) and a 3,5‐dioctyloxy phenyl group (Ar2). All these arrays were effectively converted into the corresponding triply linked porphyrin tapes TBOn by oxidation with DDQ‐Sc(OTf)3. Importantly, the low energy Q‐band‐like absorption bands of TBOn are progressively red‐shifted with an increase in the number of porphyrins n until 16 but the red‐shift is saturated at n=16, indicating the ECL of the porphyrin tape to be around 14–16. The regularly introduced meso‐aryl bulky substituents impose facial encumbrance, hence leading to the effective suppression of π–π interactions as well as improvement of the chemical stabilities of TBOn .  相似文献   

9.
Facile synthesis of meso‐aryl‐substituted 5,15‐dithiaporphyrins and 10‐thiacorroles has been achieved by sulfidation of α,α′‐dichlorodipyrrin metal complexes with sodium sulfide in DMF. Thiacorrole metal complexes exhibit distinct aromaticity due to 18 π‐conjugation including the lone pair on sulfur, whereas dithiaporphyrins are nonaromatic judging from 1H NMR spectra, X‐ray analysis, and absorption spectra. We have found that NiII and AlIII dithiaporphyrin complexes undergo smooth thermal sulfur extrusion reaction to give the corresponding thiacorrole complexes, whereas free base, ZnII, PdII, and PtII dithiaporphyrin complexes did not exhibit the similar reactivity. The DFT calculations have elucidated a reaction pathway involving an episulfide intermediate, which can explain the markedly different reactivity among dithiaporphyrin metal complexes.  相似文献   

10.
meso‐Tetraarylporphyrinato complexes 1a – g (ZnII, CuII, and NiII) bearing one or two nitro‐substituted aryl moieties react with 1,1,1‐trimethylhydrazinium iodide in the presence of tBuOK in THF at 0–5° or in the presence of KOH in DMSO at 60–70° according to a nucleophilic substitution of an H‐atom, thus affording porphyrins 2a – g and 3f , g with amino‐functionalized meso‐positioned aryl substituents in yields up to 73% (Scheme 1 and Table). The products obtained are attractive intermediates for further derivatization of porphyrins and may be of potential use as sensitizers in photodynamic cancer therapy.  相似文献   

11.
The self‐assembly properties of two ZnII porphyrin isomers on Cu(111) are studied at different coverage by means of scanning tunneling microscopy (STM). Both isomers are substituted in their meso‐positions by two voluminous 3,5‐di(tert‐butyl)phenyl and two rod‐like 4′‐cyanobiphenyl groups, respectively. In the trans‐isomer, the two 4′‐cyanobiphenyl groups are opposite to each other, whereas they are located at right angle in the cis‐isomer. For coverage up to one monolayer, the cis‐substituted porphyrins self‐assemble to form oligomeric macrocycles held together by antiparallel CN???CN dipolar interactions and CN???H‐C(sp2) hydrogen bonding. Cyclic trimers and tetramers occur most frequently but everything from cyclic dimers to hexamers can be observed. Upon annealing of the samples at temperatures >150 °C, dimeric macrocyclic structures are observed, in which the two porphyrins are bridged by Cu atoms, originating from the surface, under formation of two CN???Cu???NC coordination bonds. The trans‐isomer builds up linear chains on Cu(111) at low coverage, whereas for higher coverage the molecules assemble in a periodic, densely packed structure. Both cis‐ and trans‐bis(4′‐cyanobiphenyl)‐substituted ZnII porphyrins behave very differently on Cu(111) compared to similar porphyrins in literature on less reactive surfaces such as Au(111) and Ag(111). On the latter surfaces, there is no signal visible between molecular orientation and the crystal directions of the substrate, whereas on Cu(111), very strong adsorbate–substrate interactions have a dominating influence on all observed structures. This strong porphyrin–substrate interaction enables a much broader variety of structures, including also less favorable intermolecular bonding motifs and geometries.  相似文献   

12.
Mono‐ and bis(diphenylborane)‐fused porphyrins were synthesized from the corresponding β‐(2‐trimethylsilylphenyl)‐substituted porphyrins through the sequence of Si–B exchange reaction, intramolecular bora‐Friedel–Crafts reaction, and ring‐closing Si–B exchange reaction. Effective electronic interactions of the empty p‐orbital of the boron atom with the porphyrin π‐circuit lead to red‐shifted absorption spectra and substantially decreased LUMO energy levels. Pyridine adds at the boron center to cause disruption of the electronic interaction of the boron atom with large association constants (1.9–17×104 m ?1) depending on the central metal at the porphyrin. The ZnII complex behaved as a hetero‐dinuclear Lewis acid, exhibiting regioselective binding of pyridines at the boron or the zinc center.  相似文献   

13.
A benzene‐1,3,5‐triaminyl radical fused with three ZnII‐porphyrins was synthesized through a three‐fold oxidative fusion reaction of 1,3,5‐tris(ZnII‐porphyrinylamino)benzene followed by oxidation with PbO2 as key steps. This triaminyl radical has been shown to possess a quartet ground state with a doublet–quartet energy gap of 3.1 kJ mol?1 by superconducting quantum interference device (SQUID) studies. Despite its high‐spin nature, this triradical is remarkably stable, which allows its separation and recrystallization under ambient conditions. Moreover, this triradical can be stored as a solid for more than one year without serious deterioration. The high stability of the triradical is attributed to effective spin delocalization over the porphyrin segments and steric protection at the nitrogen centers and the porphyrin meso positions.  相似文献   

14.
Our synthetic attempts for the preparation oligo‐ and polyporphyrin arrays were reviewed in comparison with recent accomplishment in the related field. Especially, the synthesis and structural characteristics of huge monodisperse meso‐meso linked porphyrin arrays with multidimensional architectures were focused. The AgI‐promoted meso‐meso coupling reaction of 5,15‐diaryl and 5,10,15‐triaryl ZnII‐porphyrins is advantageous in light of its high regioselectivity, as well as its easy extension to large porphyrin arrays. When applied to 1,4‐phenylene‐bridged linear porphyrin substrates, the coupling reaction gave three‐dimensionally arranged windmill‐shaped and grid‐shaped porphyrin arrays. The meso‐meso coupling doubling reaction was repeated up to the synthesis of a discrete 128‐mer. During these attempts, many porphyrin arrays were isolated in a discrete form by repetitive gel‐permeation chromatography and, interestingly, all the arrays exhibited high solubility in common organic solvents in spite of their giant molecular size. Furthermore, the AgI‐promoted coupling reaction was extended to the preparation of long polyporphyrinylenes under slightly modified conditions by either adding N,N‐dimethylacetamide (DMA) or heating slightly.  相似文献   

15.
We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterobimetallic porphyrin complexes. The protocol allows the synthesis of unsymmetrical aryl-based meso-meso as well as β-meso-linked porphyrins. Our method significantly increases the overall yield for the published compound known as o-phenylene-bisporphyrin (OBBP) by a factor of 6.8. Besides the synthesis of 16 novel homobimetallic complexes containing MnIII, FeIII, NiII, CuII, ZnII, and PdII, we achieved the first single-crystal X-ray structure of an unsymmetrical cofacial benzene-linked porphyrin dimer containing both planar-chiral enantiomers of a NiII2 complex. Additionally, this new methodology allows access to heterobimetallic complexes such as the FeIII-NiII containing carbon monoxide dehydrogenase active site analogue. The isolated species were investigated by various techniques, including ion mobility spectrometry, DFT calculations, and UV/Vis spectroscopy. This allowed us to probe the influence of interplane distance on Soret band splitting.  相似文献   

16.
2,7,12,17-Tetrakis(pinacolatoboryl) NiII porphyrin 5 Ni was synthesized in 75 % yield by Ir-catalyzed borylation of porphine followed by NiII metalation and has been demonstrated to be a useful synthon, giving 2,7,12,17-tetraaryated NiII porphyrins 6 a – d , peripherally octaarylated NiII porphyrins 8 a – d , quadruply bridged face-to-face non-offset NiII-porphyrin dimer 12 , and cross-shaped β-meso singly linked porphyrin pentamers and nonamers. Oxidation of cross-shaped β-meso singly linked porphyrin pentamers 14 Ni and 14 Zn gave fused pentameric tapes 15 Ni and 15 Zn . The structures of 12 , 14 Zn , and 15 Ni have been revealed by X-ray diffraction analysis. Optical separation of 12 has been accomplished, showing a bisignate coupling pattern for exciton-coupled blue-shifted Soret band. Pentameric porphyrin tape 15 Zn exhibits a red-shifted absorption band at 1156 nm and seven reversible redox waves.  相似文献   

17.
The synthesis of a new series of free‐base, NiII and ZnII 2,3,12,13‐tetra(ethynyl)‐5,10,15,20‐tetraphenyl porphyrins is described. Upon heating, two of the four ethynyl moieties undergo Bergman cyclization to afford the monocyclized 2,3‐diethynyl‐5,20‐diphenylpiceno[10,11,12,13,14,15‐jklmn]porphyrin in 30 %, 10 %, and trace yields, respectively. The structures of all products were investigated by using quantum chemical calculations and the free‐base analogue was isolated and crystallized; all compounds show significant deviation from the idealized planar structure. No fully‐cyclized bispiceno[20,1,2,3,4,5,10,11,12,13,14,15‐fghij]porphyrin was isolated from the reaction mixture. To understand why only two of the four enthynyl groups undergo Bergman cyclization, the reaction coordinates were examined by using DFT at the PWPW91/cc‐pVTZ(‐f) level coupled to a continuum solvation model. The barrier to cyclization of the second pair of ethynyl groups was found to be 5.5 kcal mol?1 higher than the first, suggesting a negative cooperative effect and significantly slower rate for the second cyclization. Cyclization reactions for model porphyrin–enediynes with ethene‐ and H‐functionality substitutions at the meso‐phenyl rings were also examined, and found to have a similar barrier to diradical formation for the second cyclization event as for the first in these highly planar molecules. By enforcing an artificial 30° cant in two of the pyrrole rings of the porphyrin, the second barrier was increased by 2 kcal mol?1 in the ethene model system; this suggests that the disruption of the π conjugation of the extended porphyrin structure is the cause of the increased barrier to the second cyclization event.  相似文献   

18.
We report the synthesis and characterization of porphyrin–corrole–porphyrin (Por‐Cor‐Por) hybrids directly linked at the meso–meso positions for the first time. The stability and solubility of the trimer are carefully balanced by adding electron‐withdrawing substituents to the corrole ring and sterically bulky groups on the porphyrins. The new hybrids are capable of stabilizing more than one metal ion in a single molecular scaffold. The versatility of the triad has been demonstrated by successfully stabilizing homo‐ (Ni) and heterotrinuclear (Ni‐Cu‐Ni) coordination motifs. The solid‐state structure of the NiPor‐CuCor‐PorNi hybrid was revealed by single‐crystal X‐ray diffraction studies. The NiII porphyrins are significantly ruffled and tilted by 83° from the plane of corrole. The robustness of the synthesized hybrids was reflected in the electrochemical investigations and the redox behaviour of the hybrids show that the oxidation processes are mostly corrole‐centred. In particular it is worth noting that the Por‐Cor‐Por hybrid can further be manipulated due to the presence of substituent‐free meso‐positions on both the terminals.  相似文献   

19.
Novel meso‐ or β‐derivatized porphyrins with a carboxyl group have been designed and synthesized for use as sensitizers in dye‐sensitized solar cells (DSSCs). The position and nature of a bridge connecting the porphyrin ring and carboxylic acid group show significant influences on the spectral, electrochemical, and photovoltaic properties of these sensitizers. Absorption spectra of porphyrins with a phenylethynyl bridge show that both Soret and Q bands are red‐shifted with respect to those of porphyrin 6 . This phenomenon is more pronounced for porphyrins 3 and 4 , which have a π‐conjugated electron‐donating group at the meso position opposite the anchoring group. Upon introduction of an ethynylene group at the meso position, the potential at the first oxidation alters only slightly whereas that for the first reduction is significantly shifted to the positive, thus indicating a decreased HOMO–LUMO gap. Quantum‐chemical (DFT) results support the spectroelectrochemical data for a delocalization of charge between the porphyrin ring and the amino group in the first oxidative state of diarylamino‐substituted porphyrin 5 , which exhibits the best photovoltaic performance among all the porphyrins under investigation. From a comparison of the cell performance based on the same TiO2 films, the devices made of porphyrin 5 coadsorbed with chenodeoxycholic acid (CDCA) on TiO2 in ratios [ 5 ]/[CDCA]=1:1 and 1:2 have efficiencies of power conversion similar to that of an N3 ‐based DSSC, which makes this green dye a promising candidate for colorful DSSC applications.  相似文献   

20.
A series of N‐confused free‐base meso‐substituted tetraarylporphyrins was investigated by electrochemistry and spectroelectrochemistry in nonaqueous media containing 0.1 M tetra‐n‐butylammonium perchlorate (TBAP) and added acid or base. The investigated compounds are represented as (XPh)4NcpH2, in which “Ncp” is the N‐confused porphyrin macrocycle and X is a OCH3, CH3, H, or Cl substituent on the para position of each meso‐phenyl ring of the macrocycle. Two distinct types of UV/Vis spectra are initially observed depending upon solvent, one corresponding to an inner‐2H form and the other to an inner‐3H form of the porphyrin. Both forms have an inverted pyrrole with a carbon inside the cavity and a nitrogen on the periphery of the π‐system. Each porphyrin undergoes multiple irreversible reductions and oxidations. The first one‐electron addition and first one‐electron abstraction are located on the porphyrin π‐ring system to give π‐anion and π‐cation radicals with a potential separation of 1.52 to 1.65 V between the two processes, but both electrogenerated products are unstable and undergo a rapid chemical reaction to give new electroactive species, which were characterized in the present study. The effect of the solvent and protonation/deprotonation reactions on the UV/Vis spectra, redox potentials and reduction/oxidation mechanisms is discussed with comparisons made to data and mechanisms for the structurally related free‐base corroles and porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号