首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of chemical substitutions on the photophysical properties of the salicylidene methylamine molecule (SMA) (J. Jankowska, M. F. Rode, J. Sadlej, A. L. Sobolewski, ChemPhysChem, 2012 , 13, 4287–4294) is studied with the aid of ab initio electronic structure methods. It is shown that combining π‐electron‐donating and π‐electron‐withdrawing substituents results in an electron‐density push‐and‐pull effect on the energetic landscape of the ground and the lowest excited ππ* and nπ* singlet states of the system. The presented search for the most appropriate SMA derivatives with respect to their photoswitching functionality offers an efficient prescreening tool for finding chemical structures before real synthetic realization.  相似文献   

2.
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.  相似文献   

3.
Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self‐assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited‐state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four‐level system, which is more favorable for population inversion. Low‐power driven lasing in proton‐transfer molecular nanowires with an optimized ESIPT energy‐level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP‐type resonators, which generated single‐mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process.  相似文献   

4.
Excited‐state intramolecular proton transfer (ESIPT) is a particularly well known reaction that has been very little studied in magnetic environments. In this work, we report on the photophysical behavior of a known ESIPT dye of the benzothiazole class, when in solution with uncoated superparamagnetic iron oxide nanoparticles, and when grafted to silica‐coated iron oxide nanoparticles. Uncoated iron oxide nanoparticles promoted the fluorescence quenching of the ESIPT dye, resulting from collisions during the lifetime of the excited state. The assembly of iron oxide nanoparticles with a shell of silica provided recovery of the ESIPT emission, due to the isolation promoted by the silica shell. The silica network gives protection against the fluorescence quenching of the dye, allowing the nanoparticles to act as a bimodal (optical and magnetic) imaging contrast agent with a large Stokes shift.  相似文献   

5.
Contemporary progress regarding guest/host types of excited‐state double proton transfer has been reviewed, among which are the biprotonic transfer within doubly H‐bonded host/guest complexes, the transfer through a solvent bridge relay, the intramolecular double proton transfer and solvation dynamics coupled proton transfer. Of particular emphases are the photophysical and photochemical properties of excited‐state double proton transfer (ESDPT) in 7‐azaindole and its corresponding analogues. From the chemical aspect, two types of ESDPT reaction, namely the catalytic and non‐catalytic types of ESDPT, have been classified and reviewed separately. For the case of static host/guest hydrogen‐bonded complexes both hydrogen‐bonding strength and configuration (i.e. geometry) play key roles in accounting for the reaction dynamics. In addition to the dynamical concern, excited‐state thermodynamics are of importance to fine‐tune the proton transfer reaction in the non‐catalytic host/guest type of ESDPT. The mechanisms of protic solvent assisted ESDPT, depending on host molecules and proton‐transfer models, have been reviewed where the plausible resolution is deduced. Particular attention has been given to the excited‐state proton transfer dynamics in pure water, aiming at its future perspective in biological applications. Finally, the differentiation in mechanism between solvent diffusive reorganization and solvent relaxation to affect the host/guest ESPT dynamics is made and discussed in de tail.  相似文献   

6.
The luminescent properties of a family of lanthanide metal–organic frameworks LnL ( Ln =Y, La–Yb, except Pm; L =4,4′‐({2‐[(4‐carboxyphenoxy)methyl]‐2‐methylpropane‐1,3‐diyl}bis{oxy})dibenzoic acid) have been explored, and the energy‐transfer process in the compounds has been carefully analyzed. The visible‐emitting Tb0.08Gd0.92L and the near‐infrared (NIR)‐luminescent Yb0.10Gd0.90L show excellent optical performances and can be considered as fluorescent probes for acetone sensing based on luminescence quenching effects arising from host–guest interactions. Moreover, GdL exhibits a strong second harmonic generation (SHG) signal 6.1 times that of potassium dihydrogen phosphate (KDP) and an outstanding phase‐matchable effect. These lanthanide compounds combining fluorescent and nonlinear optical (NLO) properties could meet further requirements as multifunctional materials.  相似文献   

7.
Significant efforts have been made to develop high‐efficiency organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange–red colors. However, efficient TADF materials with colors ranging from red, to deep‐red, to near‐infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA‐DCPP (TPA=triphenylamine; DCPP=2,3‐dicyanopyrazino phenanthrene) which has a small singlet–triplet splitting (ΔEST) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L′Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most‐efficient deep‐red/NIR phosphorescent OLEDs with similar electroluminescent spectra.  相似文献   

8.
李超捷  尹少云  潘梅 《化学教育》2021,42(22):48-52
介绍了一个综合化学实验:激发态分子内质子转移(Excited-State Intramolecular Proton Transfer,ESIPT)有机分子的合成与光致发光性能研究。在本实验中,学生将学习并掌握该类有机分子的制备方法以及表征手段。同时学生也将进一步加深对荧光基本原理的理解,以及更深入地掌握荧光光谱仪的使用以及学习常见的光物理性质相关数据的测试方法。通过在不同溶剂条件下测试荧光光谱,让学生能更直观地了解溶剂变色发光效应并思考成因。  相似文献   

9.
An amine‐embedded flexible alkyl strap has been incorporated into an emissive boryl‐substituted dithienylpyrrole skeleton as a new entity of excited‐state intramolecular proton transfer (ESIPT) chromophores. The π‐electron system shows a dual emission, which covers a wide range of the visible region depending on the solvent polarity. The incorporation of the aminoalkyl strap as well as the terminal boryl groups efficiently stabilize the zwitterionic excited‐state species resulting from the ESIPT even in an aqueous medium.  相似文献   

10.
A series of compounds containing 5‐(2‐aminobenzylidene)‐2,3‐dimethyl‐3,5‐dihydro‐4H‐imidazol‐4‐one ( o ‐ABDI ) as the core chromophore with a seven‐membered‐ring N?H‐type intramolecular hydrogen bond have been synthesized and characterized. The acidity of the N?H proton and thus the hydrogen‐bond strength can be fine‐tuned by replacing one of the amino hydrogen atoms by a substituent R, the acidity increasing with increasing electron‐withdrawing strength of R, that is, in the order H<COCH3<COPh<Tosyl<COCF3. The tosyl and trifluoroacetyl derivatives undergo ultrafast, irreversible excited‐state intramolecular proton transfer (ESIPT) that results in proton‐transfer emission solely in the red region. Reversible ESIPT, and hence dual emission, involving the normal and proton‐transfer tautomers was resolved for the acetyl‐ and benzyl‐substituted counterparts. For o ‐ABDI , which has the weakest acidity, ESIPT is prohibited due to its highly endergonic reaction. The results clearly demonstrate the harnessing of ESIPT by modifying the proton acidity and hydrogen‐bonding strength in a seven‐membered‐ring intramolecular hydrogen‐bonding system. For all the compounds studied, the emission quantum yields are weak (ca. 10?3) in dichloromethane, but strong in the solid form, ranging from 3.2 to 47.4 %.  相似文献   

11.
《化学:亚洲杂志》2017,12(23):3010-3015
Searching for eight‐membered ring π‐conjugated hydrogen bonding (8‐MR H‐bonding) systems with excited‐state intramolecular proton transfer (ESIPT) property is seminal and synthetically challenging. In this work, a series of π‐conjugated molecules ( 8‐HB‐1 , 8‐HB‐L1 and 8‐HB‐2 ) potentially possessing 8‐MR H‐bonding are strategically designed, synthesized and characterized. The configurations of these three potential molecules are checked by their X‐ray structures, among which 8‐HB‐L1 (a structurally locked 8‐HB‐1 core chromophore) is proved to be an 8‐MR H‐bonding system, whereas 8‐HB‐1 and 8‐HB‐2 are too sterically hindered to form the 8‐MR intramolecular H‐bond. The ESIPT property of 8‐HB‐L1 is confirmed by the dual fluorescence consisting of normal and proton‐transfer tautomer emissions. The insight into the ESIPT process of 8‐HB‐L1 is provided by femtosecond fluorescence upconversion measurements together with computational simulation. The results demonstrate for the first time a successful synthetic route to attain the 8‐MR H‐bonding molecule 8‐HB‐L1 with ESIPT property.  相似文献   

12.
Self‐assembly structure, stability, hydrogen‐bonding interaction, and optical properties of a new class of low molecular weight organogelators (LMOGs) formed by salicylanilides 3 and 4 have been investigated by field‐emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD), UV/Vis absorption and photoluminescence, as well as theoretical studies by DFT and semiempirical calculations with CI (AM1/PECI=8) methods. It was found that salicylanilides form gels in nonpolar solvents due to π‐stacking interaction complemented by the presence of both inter‐ and intramolecular hydrogen bonding. The supramolecular arrangement in these organogels predicted by XRD shows lamellar and hexagonal columnar structures for gelators 3 and 4 , respectively. Of particular interest is the observation of significant fluorescence enhancement accompanying gelation, which was ascribed to the formation of J‐aggregates and inhibition of intramolecular rotation in the gel state.  相似文献   

13.
Metal–organic framework (MOF)‐derived nanoporous carbon materials have attracted significant interest due to their advantages of controllable porosity, good thermal/chemical stability, high electrical conductivity, catalytic activity, easy modification with other elements and materials, etc. Thus, MOF‐derived carbons have been used in numerous applications, such as environmental remediations, energy storage systems (i.e. batteries, supercapacitors), and catalysts. To date, many strategies have been developed to enhance the properties and performance of MOF‐derived carbons. Herein, we introduce and summarize recent important approaches for advanced MOF‐derived carbon structures with a focus on precursor control, heteroatom doping, shape/orientation control, and hybridization with other functional materials.  相似文献   

14.
Cyclization of propargylic alcohols with CO2 is an important reaction in industry, and noble‐metal catalysts are often employed to ensure the high product yields under environmentally friendly conditions. Herein a porous noble‐metal‐free framework 1 with large 1D channels of 1.66 nm diameter was synthesized for this reaction. Compound 1 exhibits excellent acid/base stability, and is even stable in corrosive triethylamine for one month. Catalytic studies indicate that 1 is an effective catalyst for the cyclization of propargylic alcohols and CO2 without any solvents under mild conditions, and the turnover number (TON) can reach to a record value of 14 400. Furthermore, this MOF catalyst also has rarely seen catalytic activity when the biological macromolecule ethisterone was used as a substrate. Mechanistic studies reveal that the synergistic catalytic effect between CuI and InIII plays a key role in the conversion of CO2.  相似文献   

15.
Multifunctional NaGdF4:Yb3+,Er3+,Nd3+@NaGdF4:Nd3+ core–shell nanoparticles (called Gd:Yb3+,Er3+,Nd3+@Gd:Nd3+ NPs) with simultaneously enhanced near‐infrared (NIR)‐visible (Vis) and NIR‐NIR dual‐conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core–shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy‐transfer processes, Nd3+→Yb3+→Er3+ and Nd3+→Yb3+, respectively. The effects of Nd3+ concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd3+ content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb3+,Er3+,Nd3+@Gd:20 % Nd3+ NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core–shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging.  相似文献   

16.
Although the organic dyes based on excited state intramolecular proton transfer (ESIPT) mechanism have attracted significant attention, the structure‐property relationship of ESIPT dyes needs to be further exploited. In this paper, three series of ethynyl‐extended regioisomers of 2‐(2′‐hydroxyphenyl)benzothiazole (HBT), at the 3′‐, 4′‐ and 6‐positions, respectively, have been synthesized. Changes in the absorption and emission spectra were correlated with the position and electronic nature of the substituent groups. Although 4′‐ and 6‐substituted HBT derivatives exhibited absorption bands at longer wavelengths, the keto‐emission of 3′‐substituted HBT derivatives was found at a substantially longer wavelength. The gradual red‐shifted fluorescence emission was found for 3′‐substituted HBT derivatives where the electron‐donating nature of substituent group increased, which was opposite to what was observed for 4′‐ and 6‐substituted HBT derivatives. The results derived from the theoretical calculations were in conformity with the experimental observations. Our study could potentially provide experimental and theoretical basis for designing novel ESIPT dyes that possess unique fluorescent properties.  相似文献   

17.
18.
Mixed‐metal metal–organic frameworks (MM‐MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM‐MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM‐MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM‐MOFs respect to related single‐metal MOFs. Emphasis is made on the use of MM‐MOFs as catalysts for tandem reactions.  相似文献   

19.
Rationally tailoring a robust artificial coating can enhance the life‐time of fragile biomacromolecules. However, the coating also can restrain the activity of the guest because of the decreased substrate accessibility. Herein, we report a peptide‐directed strategy that enables in situ tailoring of the MOF‐shrouded biohybrids into controllable nanoarchitectures. The MOF biohybrid can be shaped from different 3D microporous architectures into a 2D mesoporous layer by a peptide modulator. Using this mild strategy, we show that the nanoarchitectures of the MOF coatings significantly affect the biological functions of the contained biomacromolecules. The biomacromolecules entrapped within the novel 2D mesoporous spindle‐shaped MOFs (2D MSMOFs) have significantly increased bioactivity compared to when encased within the hitherto explored 3D microporous MOFs. The improvement results from the shortened diffusion path and enlarged pore channel in 2D MSMOFs. Meanwhile, the thin 2D MSMOF layer also can provide excellent protection of the hosted biomacromolecules or protein‐scaffolded biominerals through structural confinement.  相似文献   

20.
Cost‐effective metal‐based nanostructured hybrids have been widely dedicated to potential energy storage and conversion applications. Herein, we develop a facile methodology for the synthesis of precise carbon‐confined hybrid nanostructures by stereoselective assembly accompanied by catalytic pyrolysis. Polyacrylonitrile fiber films favors not only metal‐polymer coordination, but also oriented assembly to ensure the well‐defined nanostructure of the carbon hybrids. During chemical vapor deposition (CVD), cobalt‐nanoparticle‐catalyzed growth of carbon‐nanotube branches driven by organic molecules (e.g. melamine) delivers hierarchical carbon hybrids. The resulting carbon hybrids exhibit outstanding electrochemical performance for metal‐ion batteries, for example, a high specific capacity of 680 mAh g?1 after 320 cycles (Li‐storage) and 220 mAh g?1 after 500 cycles (Na‐storage) without decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号