首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, numerous organic molecules and polymers carrying various functional groups were synthesized and used in fabrication of wearable electronic devices. Compared to previous materials that suffer from poisonousness, stiffness and complex film fabrication, we circumvent above matters by taking advantage of mussel‐inspired polydopamine as our active material to realize resistive random access memories (RRAMs). Polydopamine thin films were grown on indium tin oxide glass catalyzed by Cu2SO4/H2O2 and characterized by Fourier infrared spectroscopy (FT‐IR), UV/Vis spectroscopy and scanning electron microscopy. The Al/Polydopamine film/ITO devices possess ternary memory behavior with good ternary device yield with two threshold voltages around 1.50 V and 3.50 V, long data retention over 104 s of continuous reading or 104 pulse reading. The two resistance switchings are attributed to defects functioning as charge traps and the formation of conductive filaments. A flexible device based on Al/polydopamine film/ITO/polyethylene terephthalate retains its ternary memory behavior after being bent with a bending radius of 1.54 cm and bending cycles up to 5000, demonstrating good compatibility and flexibility of polydopamine.  相似文献   

2.
A triphenylamine derivative decorated with an azobenzene group (TDA) was synthesized via a SuFEx click reaction and its polymer, poly(triphenylamine) (PTDA), was polymerized through a redox polymerization. More interestingly, its polymeric metal complex, PTDA‐Fe, can be simply obtained via one‐pot reaction between TDA and FeCl3 owing to TDA showing a strong affinity to the FeIII ion. The sandwich memory device based on PTDA nanofilms as active layers exhibited a binary memory performance. However, the memory device based on its polymeric metal complex exhibited a unique ternary memory behavior. The different memory performances should come from the different conductive mechanism. The mechanism of such ternary memory devices is illustrated based on both the theoretical calculation and experiments. Our work provides new insights into the preparation of novel materials for multilevel memory devices.  相似文献   

3.
Recently, resistance random access memories (RRAMs) have been studied extensively, because the demand for information storage is increasing. However, it remains challenging to obtain a flexible device because the active materials involved need to be nontoxic, nonpolluting, distortion-tolerable, and biodegradable as well adhesive to diverse flexible substrates. In this paper, tannic acid (TA) and an iron ion (FeIII) coordination complex were employed as the active layer in a sandwich-like (Al/active layer/substrate) device to achieve memory performance. A nontoxic, biocompatible TA-FeIII coordination complex was synthesized by a one-step self-assembly solution method. The retention time of the TA-FeIII memory performance was up to 15 000 s, the yield up to 53 %. Furthermore, the TA-FeIII coordination complex can form a high-quality film and shows stable ternary memory behavior on various flexible substrates, such as polyethylene terephthalate (PET), polyimide (PI), printer paper, and leaf. The device can be degraded by immersing it in vinegar solution. Our work will broaden the application of organic coordination complexes in flexible memory devices with diverse substrates.  相似文献   

4.
The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D–π–A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D–A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended‐charge‐trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance.  相似文献   

5.
《化学:亚洲杂志》2017,12(1):45-51
Herein, two molecules based on urea and thiourea, which differ by only a single atom, were designed, successfully synthesized, and fabricated into resistive random‐access memory devices (RRAM). The urea‐based molecule showed binary write‐once‐read‐many (WORM) storage behavior, whereas the thiourea‐based molecule demonstrated ternary storage behavior. Atomic‐force microscopy (AFM) and X‐ray diffraction (XRD) patterns show that both molecules have smooth morphology and ordered layer‐by‐layer lamellar packing, which is beneficial for charge transportation and, consequently, device performance. Additionally, the optical and electrochemical properties indicate that the thiourea‐based molecule has a lower bandgap and may be polarized by trapped charges, thus the formation of a continuous conductive channel and electric switching occurs at lower bias voltage, which results in ternary WORM behavior. This study, together with our previous work on single‐atom substitution, may be useful to tune and improve device performance in the future design of organic memory.  相似文献   

6.
Three small organic molecules that contained a phenothiazine backbone and triphenylamine (TPA), carbazole (CZ), or anthracene (AN) as a terminal electron donor were synthesized and fabricated in ITO/organic film/Al sandwiched memory devices. The influence of the extent of conjugation in the three molecules on the performance of their corresponding devices was investigated and the results showed that all of the fabricated devices exhibited nonvolatile ternary WORM character, whilst the switch threshold voltages decreased on moving from TPA to CZ and AN, which is promising for low‐power‐consumption data storage. These results revealed that tailoring the extent of conjugation in the terminal electron donor in the D–A molecules could effectively optimize the device performance, in particular the switch‐threshold voltage, which could be instructive for the design of low‐energy‐consumption memory materials.  相似文献   

7.
Nowadays, most manufacturing memory devices are based on materials with electrical bistability (i. e., “0” and “1”) in response to an applied electric field. Memory devices with multilevel states are highly desired so as to produce high-density and efficient memory devices. Herein, we report the first multichannel strategy to realize a ternary-state memristor. We make use of the intrinsic sub-nanometer channel of pillar[5]arene and nanometer channel of a two-dimensional imine polymer to construct an active layer with multilevel channels for ternary memory devices. Low threshold voltage, long retention time, clearly distinguishable resistance states, high ON/OFF ratio (OFF/ON1/ON2=1 : 10 : 103), and high ternary yield (75 %) were obtained. In addition, the flexible memory device based on 2DPTPAZ+TAPB can maintain its stable ternary memory performance after being bent 500 times. The device also exhibits excellent thermal stability and can tolerate a temperature as high as 300 °C. It is envisioned that the results of this work will open up possibilities for multistate, flexible resistive memories with good thermal stability and low energy consumption, and broaden the application of pillar[n]arene.  相似文献   

8.
Three O‐fluoroazobenzene‐based molecules were chosen as memory‐active molecules: FAZO‐1 with a D–A2–D symmetric structure, FAZO‐2 with an A1–A2–A1 symmetric structure, and FAZO‐3 with a D–A2–A1 asymmetric structure. Both FAZO‐1 and FAZO‐2 had a lower molecular polarity, whereas FAZO‐3 had a higher polarity. The fabricated indium–tin oxide (ITO)/ FAZO‐1 /Al (Au) and ITO/ FAZO‐2 /Al (Au) memory devices both exhibited volatile static random access memory (SRAM) behavior, whereas the ITO/ FAZO‐3 /Al (Au) device showed nonvolatile ternary write‐once‐read‐many‐times (WORM) behavior. It should be noted that the reproducibility of these devices was considerably high, which is significant for practical application in memory devices. In addition, the different memory performances of the three active materials were determined to be attributable to the stability of electric‐field‐induced charge‐transfer complexes. Therefore, the switching memory behavior could be tuned by adjusting the molecular polarity.  相似文献   

9.
《化学:亚洲杂志》2017,12(17):2278-2283
Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich‐like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ‐PTZO‐CN) was fabricated in an indium tin oxide (ITO)/PTZ‐PTZO‐CN/Al sandwich‐like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ‐PTZO‐CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain.  相似文献   

10.
Polymeric materials have been widely used in the fabrication of data‐storage devices, owing to their unique advantages and defined conduction mechanisms. To date, the most‐functional polymers that have been reported for memory devices were synthesized through random copolymerization, whilst there have been no reports regarding the memory effect of block polymers. Herein, we synthesized a random copolymer (PMCz8co‐PMBNa2) and its corresponding block copolymer (PMCz8b‐PMBNa2) to study the effect of the method of polymerization on the memory properties of the corresponding devices. Interestingly, both devices (ITO/PMCz8co‐PMBNa2/Al and ITO/PMCz8b‐PMBNa2/Al) exhibited ternary memory performance, with threshold voltages of ?1.7 V/?3.3 V and ?2.7 V/?3.8 V, respectively. However, based on comprehensive measurements, the memory properties of PMCz8co‐PMBNa2 and PMCz8b‐PMBNa2 were found to be owing to the operation of different conduction mechanisms, which resulted from different molecular stacking in the film state. Therefore, we expect that this work will be helpful for improving our understanding of the conduction mechanisms in polymer‐based data‐storage devices.  相似文献   

11.
Molecular stacking and crystallinity in a film can effectively affect the charge‐carrier mobility of semiconductor materials and corresponding device performance. Currently, solvent vapor annealing (SVA), as an effective thin‐film optimization strategy, which can select the appropriate solvent according to the characteristics of the molecular structure to optimize the intermolecular orderly arrangement, is often adopted. Thus, a small conjugated molecule C20‐ID(TPCN)2 with flexible alkyl side chains was synthesized and applied as active layer of sandwich memory devices. The active layer film has been annealed with different polar solvent vapors to evaluate the relationship among the molecular structure, solvent selection, annealing parameters and intermolecular stacking. Compared to un‐annealed devices, the memory devices based on the films through CH2Cl2‐annealing show better performance with a lower threshold voltage due to developed ordered molecular aggregation and better crystallinity, while a hydrophilic solvent vapor will weaken the device performance. This work not only reveals that selecting an appropriate solvent vapor for the molecular structure could be of vital importance in inducing the desired intermolecular stacking mode, but also provides a novel insight for the realization of organic semiconductor devices with excellent performance.  相似文献   

12.
Covalent organic polymers (COPs) have emerged as a promising class of materials for memory devices due to their unique electronic properties and potential for tunability. This review highlights recent advances in the field of COPs-based thin films for memory applications, with a focus on the synthesis and characterization of COP thin films, their electronic properties, and their performance as memory devices. The potential of COPs-based thin films as flexible memory devices is also discussed. Overall, the recent progress in COPs-based thin films for memory applications suggests that these materials may have a significant impact on the development of next-generation memory technologies.  相似文献   

13.
Herein, a functional hyperbranched polyimide, denoted as ATPP‐HBPI, was synthesized by termination of polyamic acid with 5‐(4‐aminophenyl)‐10, 15, 20‐triphenylporphyrin (ATPP) and chemical imidization. Subsequently, ATPP‐HBPI was coordinated with Zn ion to give Zn‐ATPP‐HBPI. In the HBPIs, the porphyrin terminals acted as the electron donor (D) and the 6FDA moieties acted as the electron acceptor (A) to promote the electron transition. Both ATPP‐HBPI and Zn‐ATPP‐HBPI exhibited good organo‐solubility and high thermal stability. They were used as the electroactive layer to fabricate the memory device with a configuration of indium tin oxide (ITO)/HBPI/Al to evaluate their bistability. The devices exhibited different memory behaviors, WORM for ATPP‐HBPI and SRAM for Zn‐ATPP‐HBPI, respectively. Optical and electrochemical experiments and molecular simulation were carried out to illustrate this phenomenon of performance transformation. The results show that the metallization of terminal of the HBPIs provides a strategy for tailoring the memory characteristics of the devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1953–1961  相似文献   

14.
Metal‐organic frameworks (MOFs) have drawn increasing attentions as promising candidates for functional devices. Herein, we present MOF films in constructing memory devices with alcohol mediated resistance switching property, where the resistance state is controlled by applying alcohol vapors to achieve multilevel information storage. The ordered packing mode and the hydrogen bonding system of the guest molecules adsorbed in MOF crystals are shown to be the reason for the alcohol mediated electrical switching. This chemically mediated memory device can be a candidate in achieving environment‐responsive devices and exhibits potential applications in wearable information storage systems.  相似文献   

15.
16.
Three novel conjugated polymers based on 9,9′-dioctylfluorene unit and isoindolo[2,1-a]benzimidazol-11-one with different fluorine substituents (0, 2 and 4) were synthesized. PLED and resistive memory devices based on these polymers were prepared consequently. PLED based on four-fluorinated polymer showed the highest maximum brightness of 3192 cd m−2 with almost 5-fold increase of current efficiency 8-fold increase of external quantum efficiency compared to that of the other two, and all the PLEDs exhibited good emission stability with no noticeable change of electroluminescence even under high voltage of 10 V. The memory device of doubly-fluorinated polymer exhibited ternary flash behavior with threshold voltages below −2.5 V, while device of four-fluorinated polymer possessed ON/OFF current ratio above 104. Impact of fluorine substitutions on the performance of devices were briefly investigated. The results revealed that the improvement of device performance might not scale with the increasing number of fluorine substitutions, and the four-fluorine-substituted polymer and doubly-fluorinated polymer could be encouraging materials for applications of PLED and resistive memory device and worth of further design of other new polymer systems.  相似文献   

17.
Semiconductive metal–organic frameworks (MOFs) have emerged in applications such as chemical sensors, electrocatalysts, energy storage materials, and electronic devices. However, examples of semiconductive MOFs within flexible electronics have not been reported. We present flexible X‐ray detectors prepared by thermoplastic dispersal of a semiconductive MOF ( SCU‐13 ) through a commercially available polymer, poly(vinylidene fluoride). The flexible detectors exhibit efficient X‐ray‐to‐electric current conversion with enhanced charge‐carrier mobility and low trap density compared to pelleted devices. A high X‐ray detection sensitivity of 65.86 μCGyair?1 cm?2 was achieved, which outperforms other pelleted devices and commercial flexible X‐ray detectors. We demonstrate that the MOF‐based flexible detectors can be operated at multiple bending angles without a deterioration in detection performance. As a proof‐of‐concept, an X‐ray phase contrast under bending conditions was constructed using a 5×5 pixelated MOF‐based imager.  相似文献   

18.
Organic nonvolatile resistive switching memory is developed via selective incorporation of fullerene derivatives, [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM), into the nanostructure of self‐assembled poly(styrene‐b‐methyl methacrylate) (PS10‐b‐PMMA130) diblock copolymer. PS10‐b‐PMMA130 diblock copolymer provides a spatially ordered nanotemplate with a 10‐nm PS nanosphere domain surrounded by a PMMA matrix. Spin casting of the blend solution of PS10‐b‐PMMA130 and PCBM spontaneously forms smooth films without PCBM aggregation in which PCBM molecules are incorporated within a PS nanosphere domain of PS10‐b‐PMMA130 nanostructure by preferential intermixing propensity of PCBM and PS. Based on the well‐defined PS10‐b‐PMMA130/PCBM nanostructure, resistive random access memory (ReRAM) exhibits significantly improved bipolar‐switching behavior with stable and reproducible properties at low operating voltages (RESET at 1.3 V and SET at −1.5 V) under ambient conditions. Finally, flexible memory devices are achieved using a nanostructured PS10‐b‐PMMA130/PCBM composite in which no significant degradation of electrical properties is observed before and after bending.  相似文献   

19.
As a unique two‐dimensional nanomaterial, layered black phosphorus (BP) nanosheets have shown promising applications in electronics. Although mechanical exfoliation was successfully used to prepare BP nanosheets, it is still a challenge to produce novel BP nanostructures in high yield. A facile top‐down approach for preparation of black phosphorus quantum dots (BPQDs) in solution is presented. The obtained BPQDs have a lateral size of 4.9±1.6 nm and thickness of 1.9±0.9 nm (ca. 4±2 layers). As a proof‐of‐concept application, by using BPQDs mixed with polyvinylpyrrolidone as the active layer, a flexible memory device was successfully fabricated that exhibits a nonvolatile rewritable memory effect with a high ON/OFF current ratio and good stability.  相似文献   

20.
A novel small‐molecule boron(III)‐containing donor–acceptor compound has been synthesized and employed in the fabrication of solution‐processable electronic resistive memory devices. High ternary memory performances with low turn‐on (VTh1=2.0 V) and distinct threshold voltages (VTh2=3.3 V), small reading bias (1.0 V), and long retention time (>104 seconds) with a large ON/OFF ratio of each state (current ratio of “OFF”, “ON1”, and “ON2”=1:103:106) have been demonstrated, suggestive of its potential application in high‐density data storage. The present design strategy provides new insight in the future design of memory devices with multi‐level transition states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号