首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanide (Ln3+)‐doped luminescent nanoparticles (NPs) with emission in the second near‐infrared (NIR‐II) biological window have shown great promise but their applications are currently limited by the low absorption efficiency of Ln3+ owing to the parity‐forbidden 4f→4f electronic transition. Herein, we developed a strategy for the controlled synthesis of a new class of NIR‐II luminescent nanoprobes based on Ce3+/Er3+ and Ce3+/Nd3+ co‐doped CaS NPs, which can be effectively excited by using a low‐cost blue light‐emitting diode chip. Through sensitization by the allowed 4f→5d transition of Ce3+, intense NIR‐II luminescence from Er3+ and Nd3+ with quantum yields of 9.3 % and 7.7 % was achieved, respectively. By coating them with a layer of amphiphilic phospholipids, these NPs exhibit excellent stability in water and can be exploited as sensitive NIR‐II luminescent nanoprobes for the accurate detection of an important disease biomarker, xanthine, with a detection limit of 32.0 nm .  相似文献   

2.
Small (2–28 nm) NaREF4 (rare earth (RE)=Nd–Lu, Y) nanoparticles (NPs) were prepared by an oil/water two‐phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase‐transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow‐structured NaREF4 (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron‐beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as‐prepared hollow‐structured NPs can be used as anti‐cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α‐NaLuF4:20 % Yb3+, 2 % Er3+ exhibits a pH‐sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti‐cancer efficacy. Furthermore, α‐NaLuF4:20 % Yb3+, 2 % Er3+ NPs show bright‐red emission under IR excitation, making both the excitation and emission light fall within the “optical window” of biological tissues. The application of α‐NaLuF4:20 % Yb3+, 2 % Er3+ in the luminescence imaging of cells was also investigated, which shows a bright‐red emission without background noise.  相似文献   

3.
A unique example of discrete molecular entity NdyErxYb3?(x+y)Q9 ( 1 ) (Q=quinolinolato) containing three different lanthanides simultaneously emitting in three different spectral regions in the NIR, ranging from 900 to 1600 nm, has been synthesized and fully chararacterized. A simple molecular strategy based on tuning metal composition in the Ln3Q9 framework, which contains inequivalent central and terminal coordination sites, has allowed a satisfactory ion‐size‐driven control of molecular speciation close to 90 %. In 1 the central position of the larger Nd ion is well distinguished from the terminal ones of the smaller Yb3+ and Er3+, which are almost “vicariants” as found in the heterobimetallic ErxYb3?xQ9 ( 2 ). The Ln3Q9 molecular architecture, which allows communication between the ions, has proved to afford multiple NIR emission in 1 and 2 , and is promising to develop a variety of multifunctional materials through the variation of the Ln composition.  相似文献   

4.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

5.
Microspherical bismuth oxychloride (BiOCl) can only utilize ultraviolet (UV) light to promote photocatalytic reactions. To overcome this limitation, a uniform and thin BiOCl nanosheet was synthesized with a particle size of about 200 nm. As results of UV–visible diffuse reflectance spectroscopy showed, the band gap of this nanostructure was reduced to 2.78 eV, indicating that the BiOCl nanosheet could absorb and utilize visible light. Furthermore, the upconversion material NaYF4 doped with rare earth ions Yb3+ and Er3+ emitted visible light at 410 nm following excitation with near‐infrared (NIR) light (980 nm), which could be utilized by BiOCl to produce a photocatalytic reaction. To produce a high‐efficiency photocatalyst (NaYF4:Yb3+,Er3+@BiOCl), BiOCl‐loaded NaYF4:Yb3+,Er3+ was successfully synthesized via a simple two‐step hydrothermal method. The as‐synthesized material was confirmed using X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy as well as other characterizations. The removal ratio of methylene blue by NaYF4:Yb3+,Er3+@BiOCl was much higher than that of BiOCl alone. Recycling experiments verified the stability of NaYF4:Yb3+,Er3+@BiOCl, which demonstrated excellent adsorption, strong visible‐light absorption and high electron–hole separation efficiency. Such properties are expected to be useful in practical applications, and a further understanding of the NIR‐light‐responsive photocatalytic mechanism of this new catalytic material would be conducive to improving its structural design and function.  相似文献   

6.
A crystal design strategy is described that generates hexagonal‐phased NaYF4:Nd/Yb@NaYF4:Yb/Tm luminescent nanocrystals with the ability to emit light at 803 nm when illuminated at 745 nm. This is accomplished by taking advantage of the large absorption cross‐section of Nd3+ between 720 and 760 nm plus efficient spatial energy transfer and migration through Nd3+→Yb3+→Yb3+→Tm3+. Mechanistic investigations suggest that a cascaded two‐photon energy transfer upconversion process underlies the emission mechanism. This protocol enables deep‐tissue imaging to be achieved while mitigating the attenuation effect associated with the visible emission and the overheating constraint imposed by conventional 980 nm excitation.  相似文献   

7.
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/24I9/2 (870.8 nm), 4F3/24I11/2 (1052.7 nm) and 4F3/24I13/2 (1334.5 nm); b) Er3+: 4I13/24I15/2 (1529.0 nm) c) Yb3+: 2F5/22F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.  相似文献   

8.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

9.
为改善无机Y2O3上转换纳米粒子(UCNPs)的荧光性能,且同步实现其在生物体内的成像标定,通过共沉淀法及梯度合成工艺,制备出各组不同壳层厚度的Y2O3:Yb3+,Er3+@Y2O3:Yb3+ UCNPs。利用透射电子显微镜(TEM)扫描、X射线衍射(XRD)、上转换荧光(UCL)光谱、UCL寿命等对样品的形貌、结构及荧光性能进行了表征。结果表明:利用共沉淀法制得小尺寸Y2O3:Yb3+,Er3+@Y2O3:Yb3+纳米核壳颗粒,平均粒径范围在25.57~26.24 nm之间。通过调整Yb3+浓度和水浴时间优化合成工艺,获得高发射强度、长荧光寿命方案(80% Yb掺杂,8 h水浴)。高红绿比的荧光发射特征,决定其在小动物体内荧光标定检测时更宜采用红色信道。  相似文献   

10.
Lanthanide ion (LnIII) complexes, [Ln(3Tcbx)2]3+ (LnIII=YbIII, NdIII, ErIII) are isolated with a new pyridine-bis(carboxamide)-based ligand with a 2,2′:5′,2′′-terthiophene pendant (3TCbx), and their resulting photophysical properties are explored. Upon excitation of the complexes at 490 nm, only LnIII emission is observed with efficiencies of 0.29 % at 976 nm for LnIII=YbIII and 0.16 % at 1053 nm for LnIII=NdIII. ErIII emission is observed but weak. Upon excitation at 400 nm, concurrent 1O2 formation is seen, with efficiencies of 11 % for the YbIII and NdIII complexes and 13 % for the ErIII complex. Owing to the concurrent generation of 1O2, as expected, the efficiency of metal-centered emission decreases to 0.02 % for YbIII and 0.05 % for NdIII. The ability to control 1O2 generation through the excitation wavelength indicates that the incorporation of 2,2′:5′,2′′-terthiophene results in access to multiple sensitization pathways. These energy pathways are unraveled through transient absorption spectroscopy.  相似文献   

11.
A new class of lanthanide‐doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium‐enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+‐Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700‐fold enhancement) and near‐infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red‐emitting upconversion nanoprobes for biological applications.  相似文献   

12.
The photophysical and nonlinear optical properties of water‐soluble chromophore‐functionalised tris‐dipicolinate complexes [LnL3]3? (Ln=Yb and Nd) are thoroughly studied, revealing that only the YbIII luminescence can be sensitized by a two‐photon excitation process. The stability of the complex in water is strongly enhanced by embedding in dispersible organosilicate nanoparticles (NPs). Finally, the spectroscopic properties of [NBu4]3[YbL3] are studied in solution and in the solid state. The high brightness of the NPs allows imaging them as single objects using a modified two‐photon microscopy setup in a NIR‐to‐NIR configuration.  相似文献   

13.
Rare earth (Er3+ and Nd3+) ions doped cadmium lithium boro tellurite (CLiBT) glasses were prepared by melt quenching method. The vis–NIR absorption spectra of these glasses have been analyzed systematically. Judd–Ofelt intensity parameters Ωλ (λ = 2, 4, 6) have been evaluated and used to compute the radiative properties of emission transitions of Er3+ and Nd3+: CLiBT glasses. From the NIR emission spectra of Er3+: CLiBT glasses a broad emission band centered at 1538 nm (4I13/2 → 4I15/2) is observed and from Nd3+: CLiBT glasses, three NIR emission bands at 898 nm (4F3/2 → 4I9/2), 1070 nm (4F3/2 → 4I11/2) and 1338 nm (4F3/2 → 4I13/2) are observed with an excitation wavelength λexci = 514.5 nm (Ar+ Laser). The FWHM and stimulated emission cross-section values are calculated for Er3+ and Nd3+: CLiBT glasses. FWHM × σeP values are also calculated for Er3+: CLiBT glasses.  相似文献   

14.
The reaction of hydrated lanthanoid chlorides with tribenzoylmethane and an alkali metal hydroxide consistently resulted in the crystallization of neutral tetranuclear assemblies with the general formula [Ln(Ae ? HOEt)( L )4]2 (Ln=Eu3+, Er3+, Yb3+; Ae=Na+, K+, Rb+). Analysis of the crystal structures of these species revealed a coordination geometry that varied from a slightly distorted square antiprism to a slightly distorted triangular dodecahedron, with the specific geometrical shape being dependent on the degree of lattice solvation and identity of the alkali metal. The near‐infrared (NIR)‐emitting assemblies of Yb3+ and Er3+ showed remarkably efficient emission, characterized by significantly longer excited‐state lifetimes (τobs≈37–47 μs for Yb3+ and τobs≈4–6 μs for Er3+) when compared with the broader family of lanthanoid β‐diketonate species, even in the case of perfluorination of the ligands. The Eu3+ assemblies show bright red emission and a luminescence performance (τobs≈0.5 ms, ${{\Phi}{{{\rm L}\hfill \atop {\rm Ln}\hfill}}}$ ≈35–37 %, ηsens≈68–70 %) more akin to the β‐diketonate species. The results highlight that the β‐triketonate ligand offers a tunable and facile system for the preparation of efficient NIR emitters without the need for more complicated perfluorination or deuteration synthetic strategies.  相似文献   

15.
采用4,4,4-三氟-1-苯基-1,3-丁二酮(TPB)为第一配体,4,7-二苯基-1,10-菲咯啉(Bath)为第二配体,分别制备了配合物Er(TPB)3Bath和Yb(TPB)3Bath,以及它们的混合配合物ErxYb1-x(TPB)3Bath(x=0.218,0.799,0.896,0.987),并对所制得配合物的发光性能进行了系统研究。研究结果表明,所有配合物均能发射所含稀土离子的近红外特征光,并且可以通过调节混合配合物中的nEr/nYb来调控Yb3+/Er3+之间的能量传递,进而提高Er3+离子在1530 nm处的发光。  相似文献   

16.
The optical properties of a Ho3+/Yb3+ co‐doped CaSc2O4 oxide material are investigated in detail. The spectral properties are described as a function of doping concentrations. The efficient Yb3+→Ho3+ energy transfer is observed. The transfer efficiency approaches 50 % before concentration quenching. The concentration‐optimized sample exhibits a strong green emission accompanied with a weak red emission, showing perfect green monochromaticity. The results of the spectral distribution, power dependence, and lifetime measurements are presented. The green, red, and near‐infrared (NIR) emissions around 545, 660, and 759 nm are assigned to the 5F4+5S25I8, 5F55I8, and 5F4+5S25I7 transitions of Ho3+, respectively. The detailed study reveals the upconversion luminescence mechanism involved in a novel Ho3+/Yb3+ co‐doped CaSc2O4 oxide material.  相似文献   

17.
Lanthanide doped core–multishell structured NaGdF4:Yb,Er@NaYF4:Yb@NaGdF4:Yb,Nd@NaYF4@NaGdF4:Yb,Tm@NaYF4 nanoparticles with power‐density independent orthogonal excitations‐emissions upconversion luminescence (UCL) were fabricated for the first time. The optical properties of these core–multishell structured nanoparticles were related to the absorption filtration effect of the NaGdF4:Yb,Tm layer. By tuning the thickness of the filtration layer, the nanoparticles can exhibit unique two independent groups of UCL: Tm3+ prominent UV/blue (UV=ultraviolet) UCL under the excitation at 980 nm and Er3+ prominent green/red UCL under the excitation at 796 nm. The filtration‐shell mediated orthogonal excitations‐emissions UCL are power‐density independent. As a proof of concept, the core–multishell nanoparticles are used in multi‐dimensional security design and imaging‐guided combined photodynamic therapy and chemotherapy.  相似文献   

18.
Er3+–Yb3+ co‐doped Lu3Ga5O12 nanogarnets were prepared and characterized; their structural and luminescence properties were determined as a function of the Yb3+ concentration. The morphology of the nanogarnets was studied by HRTEM. Under 488 nm excitation, the nanogarnets emit green, red, and near‐infrared light. The decay curves for the (4S3/2, 2H11/2) and 4F9/2 levels of the Er3+ions exhibit a non‐exponential nature under resonant laser excitation and their effective lifetimes are found to decrease with an increase in the Yb3+ concentration from 1.0 to 10.0 mol %. The non‐exponential decay curves are well fitted to the Inokuti–Hirayama model for S=8, indicating that the mechanism of interaction for energy transfer between the optically active ions is of dipole–quadrupole type. Upon 976 nm laser excitation, an intense green upconverted emission is clearly observed by the naked eyes. A significant enhancement of the red‐to‐green intensity ratio of Er3+ ions was observed with an increase in Yb3+ concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two‐photon upconversion processes for the green and red emissions.  相似文献   

19.
We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core–shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core–shell nanoparticles, we have realized upconversion emission of Mn2+ at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn2+emission, enabled by trapping the excitation energy through a Gd3+ lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd3+ at 310 nm (6P7/28S7/2). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn2+ doping in the lanthanide‐based host lattice arising from the formation of F? vacancies around Mn2+ ions to maintain charge neutrality in the shell layer.  相似文献   

20.
Bipyrimidines have been chosen as (N∧N)(N∧N) bridging ligands for connecting metal centers. IrIII-LnIII (Ln = Nd, Yb, Er) bimetallic complexes [Ir(dfppy)2(μ-bpm)Ln(TTA)3]Cl were synthesized by using Ir(dfppy)2(bpm)Cl as the ligand coordinating to lanthanide complexes Ln(TTA)3·2H2O. The stability constants between Ir(dfppy)2(bpm)Cl and lanthanide ions were measured by fluorescence titration. The obvious quenching of visible emission from IrIII complex in the IrIII-LnIII (Ln = Nd, Yb, Er) bimetallic complexes indicates that energy transfer occurred from IrIII center to lanthanides. NIR emissions from NdIII, YbIII, and ErIII were obtained under the excitation of visible light by selective excitation of the IrIII-based chromophore. It was proven that Ir(dfppy)2(bpm)Cl as the ligand could effectively sensitize NIR emission from NdIII, YbIII, and ErIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号