首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To synthesize a fully organic 1D polymer in a novel twist‐stacked topology, we designed a peptide monomer HC≡CCH2‐NH‐Ile‐Leu‐N3, which crystallizes with its molecules H‐bonded along a six‐fold screw axis. These H‐bonded columns pack parallelly such that molecules arrange head‐to‐tail, forming linear non‐covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist‐stack along the screw axis. Crystals of this monomer, on heating, undergo single‐crystal‐to‐single‐crystal (SCSC) topochemical azide–alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4‐triazole‐linked polymer in a twist‐stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre‐decided topologies.  相似文献   

3.
Mechano‐induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano‐responsive molecular crystals exhibit crystal‐to‐amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) ( 1 ) and phenyl(3,5‐dimethylphenylisocyanide)gold(I) ( 2 ) complexes, which exhibit a mechano‐triggered single‐crystal‐to‐single‐crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano‐induced phase transitions have indicated that they undergo non‐epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash‐photolysis time‐resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time, even with repeated trials. The present studies provide us with a variety of hitherto unknown insights into mechano‐responsive molecular crystals, which help us to understand the phase transition behaviors upon mechanical stimulation and establish rational design principles.  相似文献   

4.
Dielectric switches that can be converted between high and low dielectric states by thermal stimuli have attracted much interest owing to their many potential applications. Currently one main drawback for practical application lies in the non‐tunability of their switch temperatures (TS). We report here an ionic co‐crystal (Me3NH)4[Ni(NCS)6] that contains a multiply rotatable Me3NH+ ion and a solely rotatable one due to a more spacious supramolecular cage for the former one. This compound undergoes an isostructural order–disorder phase transition and it can function as a frequency‐tuned dielectric switch with highly adjustable TS, which is further revealed by the variable‐temperature structure analyses and molecular dynamics simulations. In addition, the distinct arrangements and molecular dynamics of two coexisting Me3NH+ ions confined in different lattice spaces as well as the notable offset effect on the promoting/hindering of dipolar reorientation after dielectric transition provide a rarely observed but fairly good model for understanding and modulating the dipole motion in crystalline environment.  相似文献   

5.
Here it is reported that crystals of an enantiopure [7]helquat salt undergo reversible thermal solid–solid phase transition at 404 K. Differential scanning calorimetry (DSC), capillary electrophoresis (CE), and X‐ray diffraction analysis were used to unravel the mechanistic details of this process. The single‐crystal‐to‐single‐crystal course enabled direct monitoring of the structural changes by in situ variable‐temperature X‐ray diffraction, thus providing the first direct evidence of a solid phase transition in a helicene‐like compound.  相似文献   

6.
A photochromic diarylethene, 1,2‐bis(5‐phenyl‐2‐propyl‐3‐thienyl)perfluorocyclopentene ( 1a ), was found to have two polymorphic crystal forms, α‐ and β‐crystals. From X‐ray crystallographic analysis, the space groups of α‐ and β‐crystals were determined to be P21/c and C2/c, respectively. The difference between two crystal forms is ascribed to the orientation of two of four molecules in the unit cell. The thermodynamic phase transition from α‐ to β‐forms occurred via a crystal‐to‐crystal process, as confirmed by differential scanning calorimetry measurements, optical microscopic observations in the reflection mode and under crossed Nicols, and powder X‐ray diffraction measurements. The movement of the molecules in the crystal was evaluated by analyzing the change of face indices before and after the phase transition.  相似文献   

7.
《化学:亚洲杂志》2018,13(19):2916-2922
Molecular‐based ionic co‐crystals, which have the merits of low‐cost/easy fabrication processes and flexible structure and functionality, have already exhibited tremendous potential in molecular memory switches and other electric devices. However, dipole (ON/OFF switching) triggering is a huge challenge. Here, we introduce a pendulum‐like dynamic strategy to induce the order–disorder transition of a co‐crystal [C5H7N3Cl]3[Sb2Br9] (compound 1 ). Here, the anion and cation act as a stator and a pendulum‐like rotor (the source of the dielectric switch), respectively. The temperature‐dependent dielectric and differential scanning calorimetry (DSC) analyses reveal that 1 undergoes a reversible phase transition, which stems from the order–disorder transition of the cations. The thermal ON/OFF switchable motions make 1 a promising candidate to promote the development of bulk crystals as artificial intelligent dielectric materials. In addition, the pendulum‐like molecular dynamics and distinct arrangements of two coexisting ions with a notable offset effect promotes/hinders dipolar reorientation after dielectric transition and provides a rarely observed but fairly useful and feasible strategy for understanding and modulating the dipole motion in crystalline electrically polarizable materials.  相似文献   

8.
A luminescent cocrystal system is reported to undergo crystal‐to‐crystal phase transformation from yellow‐emitting polymorph I to green‐emitting polymorph II, triggered by THF fuming or heating, and the green emission can recover to the initial yellow emission by grinding. The established spectroscopic and crystallographic analyses demonstrate that the phase transition occurred and benefits from the combined effect of similar molecular arrange sequence and unique alteration of intermolecular interactions from halogen/hydrogen bonds in I to π–π stacking in II. Furthermore, I and II exhibit red‐shift emission under hydrostatic pressure. The emission of I and II shows a red‐shift and recovers towards the initial emission upon acid–base fuming. This is a rare example of reversible luminescent switching of cocrystal based upon crystal‐to‐crystal phase transition, and provides an alternative strategy to develop multi‐stimuli responsive materials.  相似文献   

9.
A [2+2] cycloaddition reaction has been observed in a number of solids. The cyclobutane ring in a photodimerized material can be cleaved into olefins by UV light and heat. The high thermal stability of the metal–organic salt K2SDC (H2SDC=4,4’‐stilbenedicarboxylic acid) has been successfully utilized to investigate the reversible cleavage of a cyclobutane ring. The two polymorphs of K2SDC undergo reversible cyclobutane formation by UV light and cleavage by heat in cycles. Of these, one polymorph retains its single‐crystal nature during the reversible processes. Polymorphs are known to show different physical properties and chemical reactivities. This work reveals that the retention of single‐crystal nature is strongly associated with the packing of molecules, which is controlled by kinetics and thermodynamics. The photoemissive nature of the products makes this as a promising material for photoswitches and optical data storage devices.  相似文献   

10.
11.
12.
Metal–organic frameworks (MOFs), as a class of microporous materials with well‐defined channels and rich functionalities, hold great promise for various applications. Yet the formation and crystallization processes of various MOFs with distinct topology, connectivity, and properties remain largely unclear, and the control of such processes is rather challenging. Starting from a 0D Cu coordination polyhedron, MOP‐1, we successfully unfolded it to give a new 1D‐MOF by a single‐crystal‐to‐single‐crystal (SCSC) transformation process at room temperature as confirmed by SXRD. We also monitored the continuous transformation states by FTIR and PXRD. Cu MOFs with 2D and 3D networks were also obtained from this 1D‐MOF by SCSC transformations. Furthermore, Cu MOFs with 0D, 1D, and 3D networks, MOP‐1, 1D‐MOF, and HKUST‐1, show unique performances in the kinetics of the C?H bond catalytic oxidation reaction.  相似文献   

13.
14.
Postsynthetic installation of lanthanide cubanes into a metallosupramolecular framework via a single‐crystal‐to‐single‐crystal (SCSC) transformation is presented. Soaking single crystals of K6[Rh4Zn4O(l ‐cys)12] (K6[ 1 ]; l ‐H2cys=l ‐cysteine) in a water/ethanol solution containing Ln(OAc)3 (Ln3+=lanthanide ion) results in the exchange of K+ by Ln3+ with retention of the single crystallinity, producing Ln2[ 1 ] ( 2Ln ) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][ 1 ] ( 3Ln ) for early and late lanthanides, respectively. While the Ln3+ ions in 2Ln exist as disordered aqua species, those in 3Ln form ordered hydroxide‐bridged cubane clusters that connect [ 1 ]6? anions in a 3D metal‐organic framework through coordination bonds with carboxylate groups. This study shows the utility of an anionic metallosupramolecular framework with carboxylate groups for the creation of a series of metal cubanes that have great potential for various applications, such as magnetic materials and heterogeneous catalysts.  相似文献   

15.
16.
A triphosphaazatriangulene (H3L) was synthesized through an intramolecular triple phospha‐Friedel–Crafts reaction. The H3L triangulene contains three phosphinate groups and an extended π‐conjugated framework, which enables the stimuli‐responsive reversible transformation of [Cu(HL)(DMSO)?(MeOH)]n, a 3D‐MOF that exhibits reversible sorption characteristics, into (H3L?0.5 [Cu2(OH)4?6 H2O] ?4 H2O), a 1D‐columnar assembled proton‐conducting material. The hydrophilic nature of the latter resulted in a proton conductivity of 5.5×10?3 S cm?1 at 95 % relative humidity and 60 °C.  相似文献   

17.
18.
19.
The phase transition of layered manganese oxides to spinel phases is a well‐known phenomenon in rechargeable batteries and is the main origin of the capacity fading in these materials. This spontaneous phase transition is associated with the intrinsic properties of manganese, such as its size, preferred crystal positions, and reaction characteristics, and it is therefore very difficult to avoid. The introduction of crystal water by an electrochemical process enables the inverse phase transition from spinel to a layered Birnessite structure. Scanning transmission electron microscopy can be used to directly visualize the rearrangement of lattice atoms, the simultaneous insertion of crystal water, the formation of a transient structure at the phase boundary, and layer‐by‐layer progression of the phase transition from the edge. This research indicates that crystal water intercalation can reverse phase transformation with thermodynamically favored directionality.  相似文献   

20.
《化学:亚洲杂志》2017,12(7):811-815
Crystals of pyrene tweezers 1 with interdigitating pyrenyl blades jump vigorously at around 160 °C. Single‐crystal X‐ray diffraction analysis before jumping revealed the presence of a “pyrene tetrad” in the crystal lattice, where four pyrenyl blades are π ‐stacked on top of each other. Upon heating the crystal to induce the jumping event, inner two pyrenyl blades in the “pyrene tetrad” probably rotate to switch off their π ‐stacking interaction with the neighboring outer pyrenyl blades and form new CH−π bonds. Different from reported salient crystals, our crystal jumps with the release of CHCl3 as inclusion solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号