首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, C18H18N4OS2, was prepared by reaction of S,S‐diethyl 2‐thenoylimidodithiocarbonate with 5‐amino‐3‐(4‐methylphenyl)‐1H‐pyrazole using microwave irradiation under solvent‐free conditions. In the molecule, the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.814 (4) and 0.186 (4), and the bonded distances provide evidence for polarization in the acylthiourea fragment and for aromatic type delocalization in the pyrazole ring. An intramolecular N—H...O hydrogen bond is present, forming an S(6) motif, and molecules are linked by N—H...O and N—H...N hydrogen bonds to form a ribbon in which centrosymmetric R22(4) rings, built from N—H...O hydrogen bonds and flanked by inversion‐related pairs of S(6) rings, alternate with centrosymmetric R22(6) rings built from N—H...N hydrogen bonds.  相似文献   

2.
The title compound, [(4S,4aS,5aS,6S,12aS)‐2‐amino­hydroxy­methyl­ene‐1,2,3,4,4a,5,5a,6,11,12a‐deca­hydro‐6,10,12,12a‐tetra­­hydroxy‐6‐methyl‐1,3,11‐trioxo­naphthacen‐4‐yl]­di­methyl­amm­onium chloride, C22H25N2O8+·Cl?, a well known antibiotic, has been structurally characterized from an individual coarse powder grain by use of high‐intensity synchrotron radiation, in conjunction with an exercise in ab initio powder diffraction structure solution. Free refinement of all H atoms establishes the major tautomeric form of the protonated tetracycline mol­ecule without prejudice. The mol­ecule has extensive intramolecular hydrogen bonding involving most of the potential donors and acceptors, and all intermolecular hydrogen bonding uses the chloride anion as acceptor.  相似文献   

3.
Through a solid‐state reaction, a practically phase pure powder of Ba3V2S4O3 was obtained. The crystal structure was confirmed by X‐ray single‐crystal and synchrotron X‐ray powder diffraction (P63, a=10.1620(2), c=5.93212(1) Å). X‐ray absorption spectroscopy, in conjunction with multiplet calculations, clearly describes the vanadium in charge‐disproportionated VIIIS6 and VVSO3 coordinations. The compound is shown to be a strongly correlated Mott insulator, which contradicts previous predictions. Magnetic and specific heat measurements suggest dominant antiferromagnetic spin interactions concomitant with a weak residual ferromagnetic component, and that intrinsic geometric frustration prevents long‐range order from evolving.  相似文献   

4.
The compound [Co4(C6H14N2)44‐S2)22‐S2)4] ( I ) and the pseudo‐polymorph [Co4(C6H14N2)44‐S2)22‐S2)4] ? 4 H2O ( II ) were obtained under solvothermal conditions (C6H14N2=trans‐1,2‐diaminocyclohexane). The structures feature S22? ions exhibiting two different coordination modes. Terminal S22? entities join two Co3+ centres in a μ2 fashion, whereas the central S22? groups connect four Co3+ cations in a μ4‐ coordination mode. Compound II can be transformed into compound I by heat and storage over P2O5 and storing compound I in humid air yields in the formation of compound II . The intermolecular interactions investigated through Hirshfeld surface analysis reveal that besides S???H bonding close contacts are associated with relatively weak H???H interactions. A detailed DFT analysis of the bonding situation explains the long S?S bonds in the μ4‐bridging S22? units and the short bonds for the S22? moieties in the μ2‐connecting mode. Photocatalytic hydrogen evolution experiments demonstrate the potential of compound II as catalyst.  相似文献   

5.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

6.
The reactions of enantiomerically pure (1R, 2S)‐(+)‐cis‐1‐aminoindan‐2‐ol, (1S, 2R)‐(‐)‐cis‐1‐aminoindan‐2‐ol, and racemic trans‐1‐aminoindan‐2‐ol with trimethylaluminum, ‐gallium, and ‐indium produce the intramolecularly stabilized, enantiomerically pure dimethylmetal‐1‐amino‐2‐indanolates (1R, 2S)‐(+)‐cis‐Me2AlO‐2‐C*HC7H6‐1‐C*HNH2 ( 1 ), (1S, 2R)‐(‐)‐cis‐Me2AlO‐2C*HC7H6‐1‐C*HNH2 ( 2 ), (1R, 2S)‐(+)‐cis‐Me2GaO‐2‐C*HC7H6‐1‐C*HNH2 ( 3 ), (1R, 2S)‐(+)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 4 ), (1S, 2R)‐(‐)‐cis‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 5 ), and racemic (+/‐)‐trans‐Me2InO‐2‐C*HC7H6‐1‐C*HNH2 ( 6 ). The compounds were characterized by 1H NMR, 13C NMR, 27Al NMR and mass spectra as well as 1 and 3 to 6 by determination of their crystal and molecular structures. The dynamic dissociation/association behavior of the coordinative metal‐nitrogen bond was studied by low temperature 1H NMR spectroscopy.  相似文献   

7.
Ba6Zn6ZrS14 was synthesized by a traditional salt‐melt method with KI as flux. The pale yellow crystals of Ba6Zn6ZrS14 crystallize in the tetragonal space group I4/mcm with a=16.3481 (4) Å and c=9.7221(6) Å. The structure features unique one‐dimensional parallel [Zn6S9]6? and [ZrS5]6? straight chains. The D2h‐symmetric [Zn6S9]6? cluster serves as the building block of the [Zn6S9]6? chains. A powder sample was investigated by X‐ray diffraction, optical absorption, and photoluminescence measurements. The compound shows multiple‐absorption character with three optical absorption edges around 1.78, 2.50, and 2.65 eV, respectively, which are perfectly consistent with the results of first‐principles calculations. Analysis of the density of states further revealed that the three optical absorption bands are attributable to the three S(3p6)→Zr(4d0) transitions due to the splitting of the Zr 4d orbitals in the D4h crystal field. The multiband nature of Ba6Zn6ZrS14 also results in photocatalytic activity under visible‐light irradiation and three band‐edge emissions.  相似文献   

8.
Yang Xue  Liang Zhao 《中国化学》2019,37(7):667-671
We synthesized and structurally characterized a novel pentanuclear gold(I) cluster by a Ag(I)‐mediated organometallic transformation. The racemic mixture of this pentanuclear gold cluster has been successfully transformed into an enantio‐rich hexanuclear cluster compound by adding adscititious chiral species [Au2(S‐BINAP)2]2+ (S‐BINAP = (S)‐2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl). In this process, a [AuPPh3]+ species in the pentanuclear cluster is replaced by [Au2(S‐BINAP)2]2+. This strategy represents a new method for the designed construction of chiral metal clusters.  相似文献   

9.
Copper hexathiometadiphosphate, Cu2P2S6, was synthesized and characterized. Brick‐red copper hexathiometadiphosphate Cu2P2S6 crystallizes in the tetragonal space group P42/mnm (no. 136) with a = b = 5.2565(7), c = 15.066(3) Å and V = 416.3(1) Å3 in a novel structure type. This is the first hexathiometadiphosphate, whose crystal structure is based on a slightly distorted cubic closest packing of sulfur atoms. 1/3 of the tetrahedral voids are occupied by Cu and P in an ordered fashion, thus resulting in a layered structure. The structural motif of layers composed of corner‐sharing CuS4 tetrahedra (comparable to red HgI2) that are separated by [P2S6]2– anions orientated perpendicular to these layers, is rarely found in solid state chemistry. The compound is diamagnetic and shows negligible electronic conductivity. Electronic structure calculations and UV/Vis measurements point to a bandgap in the visible range and explain the red color of the compound. Additionally, the oxidation state +1 for Cu was confirmed by the electronic structure calculations. The thermal properties of Cu2P2S6 were investigated by DTA.  相似文献   

10.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

11.
The title compound, [Ru(C6H6NO2)2(C15H11N3)(H2O)]·CH3CN·H2O, is a transfer hydrogenation catalyst supported by nitro­gen‐donor ligands. This octa­hedral RuII complex features rare monodentate coordination of 3‐meth­oxy‐2‐pyridonate ligands and inter­ligand S(6)S(6) hydrogen bonding. Comparison of the title complex with a structural analog with unsubstituted 2‐pyridonate ligands reveals subtle differences in the orientation of the ligand planes.  相似文献   

12.
The reaction of CsN3 with GaS and S at elevated temperatures results in Cs2Ga2S5. Its crystal structure was determined from single‐crystal X‐ray diffraction data. The colorless solid crystallizes in space group C2/c (no. 15) with V=1073.3(4) Å3 and Z=4. Cs2Ga2S5 is the first compound that features one‐dimensional chains ${{{\hfill 1\atop \hfill \infty }}}$ [Ga2S3(S2)2?] of edge‐ and corner‐sharing GaS4 tetrahedra. The vibrational band of the S22? units at 493 cm?1 was revealed by Raman spectroscopy. Cs2Ga2S5 has a wide bandgap of about 3.26 eV. The thermal decomposition of CsN3 yields elemental Cs, which reacts with sulfur to provide Cs2S6 as an intermediate product. The crystal structure of Cs2S6 was redetermined from selected single crystals. The red compound crystallizes in space group ${P\bar 1}$ with V=488.99(8) Å3 and Z=2. Cs2S6 consists of S62? polysulfide chains and two Cs positions with coordination numbers of 10 and 11, respectively. Results of DFT calculations on Cs2Ga2S5 are in good agreement with the experimental crystal structure and Raman data. The analysis of the chemical bonding behavior revealed completely ionic bonds for Cs, whereas Ga?S and S?S form polarized and fully covalent bonds, respectively. HOMO and LUMO are centered at the S2 units.  相似文献   

13.
A new rare example of a synthetic route in solution to the hexathiohypodiphosphate anion P2S64− is presented. Starting from P4S3, Li2S, and elemental sulfur in pyridine, this reaction yields yellow block‐shaped crystals of [py2Li]4[P2S6] · 2 py ( 1 ). The molecular structure of this hitherto unknown compound was determined by single crystal X‐ray diffraction and reveals a heteronorbornane skeleton within the Li4P2S6 entity.  相似文献   

14.
In the title compound, bis(μ‐1,1‐dioxo‐1,2‐benzothiazole‐3‐thiolato)‐κ3N,S:S3S:N,S‐bis[(1,1‐dioxo‐1,2‐benzothiazole‐3‐thiolato‐κ2N,S)(ethanol‐κO)bismuth(III)] ethanol hemisolvate, [Bi2(C7H4NO2S2)6(C2H5OH)2]·0.5C2H5OH, three independent thiosaccharinate (tsac) anions chelate the metal centre through the endocyclic N and exocyclic S atoms. The complex also presnts two `semicoordination' contacts, one from a pendant ethanol solvent molecule and a second one from an S atom of a centrosymmetrically related molecule. This latter interaction complements two π–π interactions between tsac rings to form a dimeric entity which is the elemental unit that builds up the crystal structure. These dinuclear units are connected to each other via a second type of π–π interaction, generating chains along [11]. Two ethanol molecules, one of them of full occupancy at a general position and semicoordinated to the central cation, and a second one depleted and disordered around a symmetry centre, stabilize the structure. The complex was studied theoretically and the vibrational assignations were confirmed by employing theoretical density functional theory (DFT) methods.  相似文献   

15.
A series of novel organically templated germanium antimony sulfides have been solvothermally synthesized and structurally, thermally, and optically characterized. The compound [Me2NH2]6[(Ge2Sb2S7)(Ge4S10)] ( 1 ) features two distinct tetranuclear [Ge2Sb2S7]2? and [Ge4S10]4? isolated clusters. The compound [(Me)2NH2][DabcoH]2[Ge2Sb3S10] ( 2 ) (Dabco=triethylenediamine) features a 1D‐[Ge2Sb3S10]n3n? ribbon constructed with two [GeSbS5]n3n? chains bridged by Sb3+ ion in ψ‐SbS4 configuration. Compounds [M(en)3][GeSb2S6] (M=Ni ( 3 ), Co ( 4 ) en=ethylenediamine) feature the unique 2D grid layer structures of [GeSb2S6]n2n?. The compound [(Me)2NH2]2[GeSb2S6] ( 5 ) previously reported by us features a 3D chiral microporous structure with the chiral channels. The optical absorption spectra indicate that all the compounds are wide bandgap semiconductors. Thermal stabilities of these compounds have been investigated by thermogravimetric analyses (TGA).  相似文献   

16.
In the chiral polymeric title compound, poly[aqua(4,4′‐bipyridine)[μ3S‐carboxylatomethyl‐N‐(p‐tosyl)‐l ‐cysteinato]manganese(II)], [Mn(C12H13NO6S2)(C10H8N2)(H2O)]n, the MnII ion is coordinated in a distorted octahedral geometry by one water molecule, three carboxylate O atoms from three S‐carboxyatomethyl‐N‐(p‐tosyl)‐l ‐cysteinate (Ts‐cmc) ligands and two N atoms from two 4,4′‐bipyridine molecules. Each Ts‐cmc ligand behaves as a chiral μ3‐linker connecting three MnII ions. The two‐dimensional frameworks thus formed are further connected by 4,4′‐bipyridine ligands into a three‐dimensional homochiral metal–organic framework. This is a rare case of a homochiral metal–organic framework with a flexible chiral ligand as linker, and this result demonstrates the important role of noncovalent interactions in stabilizing such assemblies.  相似文献   

17.
The title compound, [PdBr(C14H21S2)] or [PdBr{C6H3(CH2SiPr)2‐2,6}], exhibits square‐planar geometry at the Pd centre, with three atoms of the square plane provided by the rigid thio­pincer ligand, i.e. 1,3‐bis­(thio­methyl)­benzene.  相似文献   

18.
Bis(N,N‐di‐n‐butyl­di­thio­carbamato‐κ2S,S′)(1,10‐phenanthroline‐κ2N,N′)­zinc(II) ethanol hemisolvate, [Zn(C9H18NS2)2(C12H8N2)]·0.5C2H6O, (I), and bis(N,N‐di‐n‐hexyldithiocarbamato‐κ2S,S′)­bis(1,10‐phenanthroline‐κ2N,N′)calcium(II), [Ca(C13H26NS2)2(C12H8N2)2], (II), are mixed‐ligand com­plexes. In the first compound, the Zn atom has a distorted octahedral coordination, while in the second compound, the Ca atom is eight‐coordinate, with four S and four N atoms forming a highly distorted cube.  相似文献   

19.
In the title compound, catena‐poly[[tri­silver(I)‐tri‐μ3N,N‐diethyl­dithio­carbamato‐3′κS:1κS′:2κS;1κS:2κS′:3κS;2κS:3κ2S,S′:1′κS′], [Ag3(C5H10NS2)3]n, the trigonally and tetra­hedrally coordinated Ag atoms are μ3‐bridged by κ3‐ and κ4‐S2CNEt2 ligands to form a ribbon structure along the c axis. There is a twofold axis parallel to the b axis and passing through the tetra­hedrally coordinated Ag atom. The S2CNEt2 ligands coordinate the Ag atoms in η12‐ and η22‐fashions, depending on the bridging S atoms. The distances between the trigonal Ag and S atoms are 2.4915 (11)–2.6205 (11) Å, while those between the tetra­hedral Ag and S atoms are 2.5457 (11) and 2.7145 (10) Å. The shortest Ag⋯Ag distance between trigonal Ag atoms is 2.8336 (7) Å, which indicates a weak Ag⋯Ag inter­action, whereas the shortest distance between trigonal and tetra­hedral Ag atoms is 3.463 (6) Å, which is considered as non‐bonding.  相似文献   

20.
In the title compound [systematic name: 6‐amino‐5‐formyl‐3‐methylpyrimidine‐2,4(1H,3H)‐dione], C6H7N3O3, the intramolecular dimensions provide evidence for some polarization of the electronic structure. There is an intramolecular N—H...O hydrogen bond; this and a combination of three intermolecular N—H...O hydrogen bonds generate an almost planar ribbon containing S(6), R22(4), R21(6) and R44(16) rings. These ribbons are linked into sheets by a dipolar carbonyl–carbonyl interaction. The structure was refined as a nonmerohedral twin, with twin fractions 0.7924 (1) and 0.2076 (10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号