首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron-phonon interactions in the photoinduced excited electronic states in molecular systems such as phenanthrene-edge-type hydrocarbons are discussed and compared with those in the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) (the atomic orbitals between two neighboring carbon atoms combined in phase (out of phase) in the HOMO are combined out of phase (in phase) in the LUMO) are the main reason that the C-C stretching modes around 1500 cm(-1) afford much larger electron-phonon coupling constants in the excited electronic states than in the charged electronic states. The frequencies of the vibrational modes that play an essential role in the electron-phonon interactions for the excited electronic states are similar to those for the monoanions and cations in phenanthrene-edge-type hydrocarbons. Possible electron pairing and Bose-Einstein condensation in the photoinduced excited electronic states as well as those in the monoanions and cations in molecular systems such as phenanthrene-edge-type hydrocarbons are also discussed.  相似文献   

2.
Electron-phonon interactions in the monocations of deutero- and fluoroacenes are studied and compared with those in the monocations of acenes and those in the monoanions of fluoroacenes. Because of the significant phase pattern difference between the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO), the frequency modes lower than 500 cm(-1) and the high-frequency modes around 1400 cm(-1) couple more strongly to the LUMO than to the HOMO, while the frequency modes around 500 cm(-1) and the frequency modes around 1600 cm(-1) couple more strongly to the HOMO than to the LUMO in fluoroacenes with D2h geometry. The total electron-phonon coupling constants for the monocations (l(HOMO)) are estimated and compared with those for the monoanions (l(LUMO)) in deutero- and fluoroacenes. The l(HOMO) values are estimated to be 0.418, 0.399, 0.301, 0.255, and 0.222 eV for C6F6 (1f), C10F8 (2f), C14F10 (3f), C18F12 (4f), and C22F14 (5f), respectively. The l(HOMO) values are smaller than the l(LUMO) values in small fluoroacenes. But the l(HOMO) value decreases with an increase in molecular size less rapidly than the l(LUMO) value in fluoroacenes, and the l(HOMO) value of 0.074 eV is much larger than the l(LUMO) value of 0.009 eV in polyfluoroacene. The logarithmically averaged phonon frequencies for the monocations (omega(ln,HOMO)) are estimated to be larger than those for the monoanions (omega(ln,LUMO)) in fluoroacenes. This is because the C-C stretching modes around 1600 cm(-1) couple most strongly to the HOMO, and those around 1400 cm(-1) couple the most strongly to the LUMO in fluoroacenes. The significant phase pattern difference between the HOMO and the LUMO is the main reason for the calculational results. The l(HOMO) values increase much more significantly by H-F substitution than by H-D substitution in acenes. The possible inverse isotope effects in the electron-phonon interactions as a consequence of deuteration in the monocations of nanosized molecules are suggested.  相似文献   

3.
Possible electron pairing in pi-conjugated positively charged annulenes such as (CH)(18) (18an) and (CH)(30) (30an) is studied and compared with that in the positively charged acenes. The total electron-phonon coupling constants in the monocations (l(HOMO)) for 18an and 30an are estimated. The E(2g) modes of 1611 and 1201 cm(-1) most strongly couple to the highest occupied molecular orbitals (HOMO) in 18an and 30an, respectively. The l(HOMO) values for annulenes are larger than those for acenes. The phase pattern difference between the HOMO of acenes localized on the edge part of carbon atoms and the delocalized HOMO of annulenes is the main reason for the calculated results. In view of the calculated results of the l(HOMO) values, intramolecular electron mobility (sigma(intra,HOMO)), and the reorganization energies (RE(HOMO)) in the positively charged molecules, the monocations of annulenes cannot easily become good conductors compared with the monocations of acenes, but the condition of the attractive electron-electron interactions is realized more easily in the monocations of annulenes than in the monocations of acenes. The hypothetical intramolecular supercurrent originating from both intramolecular and intermolecular vibrations in the monocations of annulenes and acenes in a case where the distance between two adjacent molecules is too large for the molecular crystal to become normal metallic state, is also discussed.  相似文献   

4.
Electron-phonon interactions in the monocations of trans-polyacetylenes such as C2H4 (2tpa), C4H6 (2tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied. The C-C stretching Ag modes around 1700 cm(-1) afford the largest electron-phonon coupling constants in the monocations of polyacetylenes. However, the C-C bending Ag modes around 1200 cm(-1) afford much smaller electron-phonon coupling constants than the C-C stretching Ag modes around 1700 cm(-1) in the monocations of polyacetylenes. The total electron-phonon coupling constants for the monocations (l HOMO) are estimated to be 0.357, 0.285, 0.281, and 0.279 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l HOMO values for polyacetylenes with C 2h geometry hardly change with an increase in molecular size while those for polyacenes with D 2h geometry significantly decrease with an increase in molecular size. The l HOMO values for polyacetylenes are larger than those for polyacenes. The calculated results are rationalized in terms of the phase patterns of the molecular orbitals in detail. The electron transfer in the positively charged polyacetylenes is also discussed. Intramolecular electron mobility (sigma(intra,monocation)) in the positively charged polyacetylenes is estimated to be smaller than those for the positively charged polyacenes. The reorganization energies for the positively charged polyacetylenes are estimated to be larger than those for the positively charged polyacenes. Thus, the larger overlap integrals between two neighboring molecules are needed for the positively charged polyacetylenes to become good conductor than those for positively charged polyacenes. On the other hand, the conditions under which the electron-electron interactions are attractive are more easily realized in the monocations of polyacetylenes than in the monocations of polyacenes. The quality as conducting materials would not significantly depend on the molecular size in the positively charged polyacetylenes, compared with that in the positively charged polyacenes. Multimode problem is also treated in order to investigate how consideration of multimode problem is closely related to the characteristics of the electron-phonon interactions.  相似文献   

5.
Electron-phonon interactions in the monocation of corannulene are studied by using the hybrid Hartree-Fock (HF)/density-functional-theory (DFT) method in the Gaussian 98 program package. The C-C stretching mode of 1498 cm(-1) most strongly couples to the e1 highest occupied molecular orbitals (HOMO) in corannulene. The total electron-phonon coupling constant for the monocation (l(HOMO)) of corannulene is estimated to be 0.165 eV. The l(HOMO) value for corannulene is much larger than those for coronene and acenes with similar numbers of carbon atoms. The delocalized electronic structures and the intermediate characteristics between the strong sigma-orbital interactions and weak pi-orbital interactions originating from a bowl-shaped C(5v) geometry are the main reason that the l(HOMO) value for corannulene is much larger than those for planar D(6h) symmetric pi-conjugated coronene and D(2h) symmetric pi-conjugated acenes with similar numbers of carbon atoms. The electron transfer in the positively charged corannulene is also discussed. Intramolecular electron mobility (sigma(intra,monocation)) in the positively charged corannulene is estimated to be smaller than those for the positively charged pi-conjugated acenes and coronene. The reorganization energy for the positively charged corannulene (0.060 eV) is estimated to be larger than those for the positively charged acenes and coronene. The strong orbital interactions between two neighboring carbon atoms in the HOMO of corannulene with the bowl-shaped structure are the main reasons for the calculated results. Thus, the larger overlap integral between two neighboring molecules is needed for the positively charged corannulene to become a better conductor than those for positively charged coronene and acenes. The smaller density of states at the Fermi level n(0) values are enough for the conditions of the attractive electron-electron interactions to be realized in the monocation of corannulene than in the monocations of coronene and acenes with similar numbers of carbon atoms. The multimode problem is also treated in order to investigate how consideration of the multimode problem is closely related to the characteristics of the electron-phonon interactions.  相似文献   

6.
The conditions under which the attractive electron-electron interactions are realized in the monocations of sigma-conjugated cyanodienes such as C(6)N(4)H(4), C(8)N(6)H(4), and C(10)N(8)H(4) and of pi-conjugated acenes are discussed. The total electron-phonon coupling constants for the monocations l(HOMO) of cyanodienes are much larger than those for the monocations of acenes. The strong sigma orbital interactions between two neighboring atoms in the highest occupied molecular orbitals (HOMO) of sigma-conjugated cyanodienes are the main reason for the calculated results. Furthermore, we discuss how the conditions under which the monocation crystals become good conductor are related to the molecular size. Both the l(HOMO) values and the reorganization energies between the neutral molecules and the monocations decrease with an increase in molecular size in cyanodienes. The calculated results for the sigma-conjugated cyanodienes are compared with those for the pi-conjugated acenes in order to investigate how the CH-N substitutions in cyanodienes are closely related to the l(HOMO) values and the reorganization energies. Both the l(HOMO) and the reorganization energies in the positively charged sigma-conjugated cyanodienes are much larger than those in the positively charged pi-conjugated acenes. This means that in order to become good conductors, the positively charged sigma-conjugated cyanodienes need larger overlap integral between two adjacent molecules than the positively charged pi-conjugated acenes. On the other hand, since the l(HOMO) values for cyanodienes are much larger than those for acenes, the condition of attractive electron-electron interactions is more easily to be realized in the monocations of cyanodienes than in the monocations of acenes. It is suggested that the positively charged sigma-conjugated cyanodienes cannot easily become good conductors, but the conditions under which the electron-electron interactions become attractive are realized more easily in the positively charged sigma-conjugated cyanodienes than in the positively charged pi-conjugated acenes.  相似文献   

7.
Electron-phonon interactions in the charged cubic fluorocarbon, (CF)8 are studied, and compared with those in charged (CH)8 and (CD)8. The A1g mode of 1470 cm(-1) much more strongly couples to the a1g lowest unoccupied molecular orbitals (LUMO) than the A1g mode of 554 cm(-1) in (CF)8. The T2g mode of 1030 cm(-1), the Eg mode of 980 cm(-1), and the A1g mode of 1470 cm(-1) strongly couple to the t2u highest occupied molecular orbitals (HOMO) in (CF)8. The total electron-phonon coupling constants for the monoanion (l(-1)) and monocation (l(+1)) of (CF)8 are estimated to be 0.932 and 0.585 eV, respectively. The logarithmically averaged phonon frequencies for the monoanion (omega(ln,-1)) and monocation (omega(ln,+1)) of (CF)8 are estimated to be 1365 and 998 cm(-1), respectively. The l(-1) and omega(ln,-1) values increase much more significantly by H-F substitution than by H-D substitution in cubane. The larger displacements of carbon atoms in the high frequency vibronic active mode in (CF)8 than those in (CD)8 due to larger atomic mass of fluorine than that of deuterium, and the unchanged electron distributions in the LUMO somewhat localized on carbon atoms as a consequence of H-F and H-D substitution in cubane, are the main reason why the l(-1) and omega(ln,-1) values increase much more significantly by H-F substitution than by H-D substitution. The l(+1) and omega(ln,+1) values less significantly change than the l(-1) and omega(ln,-1) values by H-F substitution as well as by H-D substitution in cubane. This is because the t2u HOMO in (CF)8 and the t2g HOMO in (CH)8 are somewhat localized on fluorine atoms, and thus, the high frequency vibronic active modes in which the displacements of carbon atoms are large cannot necessarily very strongly couple to the HOMO somewhat localized on fluorine atoms in (CF)8.  相似文献   

8.
Electron-phonon interactions in the monoanions of polyacetylenes such as C2H4 (2tpa), C4H6 (4tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied and compared with those in the monoanions of polyacenes. The C-C stretching A(g) modes around 1500 cm(-1) the most strongly couple to the lowest unoccupied molecular orbitals (LUMO) in polyacetylenes. The estimated total electron-phonon coupling constants for the monoanions (l(LUMO)) are 0.579, 0.555, 0.463, and 0.401 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l(LUMO) values for polyacetylenes are much larger than those for polyacenes. Furthermore, the l(LUMO) value for polyacetylene with C(2h) geometry is estimated to be 0.254 eV, and is larger than that (0.024 eV) for polyacene with D(2h) geometry. The phase patterns difference between the LUMO of polyacenes localized on the edge part of carbon atoms, and the delocalized LUMO of polyacetylenes is the main reason for the calculated results. The single charge transfer through the molecule in polyacetylenes are also discussed. The reorganization energies between the neutral molecule and the corresponding monoanion are estimated to be 0.164, 0.144, 0.125, and 0.113 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. Such reorganization energy decreases with an increase in molecular size. The conditions under which the attractive electron-electron interactions are realized in the monoanions of polyacetylenes and polyacenes are discussed. In terms of the electron-phonon interactions and the reorganization energies, the relationships between the normal and possible superconducting states are briefly discussed. We find that the monoanions with smaller molecular size cannot easily become good conductors, however, the conditions under which the interactions between two electrons are attractive are more easily realized in the monoanions with smaller molecular size than in the monoanions with larger molecular size.  相似文献   

9.
The conductance of a single 1,4-diisocyanatobenzene molecule sandwiched between two single-walled carbon nanotube (SWCNT) electrodes are studied using a fully self-consistent ab initio approach which combines nonequilibrium Green's function formalism with density functional theory calculations. Several metallic zigzag and armchair SWCNTs with different diameters are used as electrodes; dangling bonds at their open ends are terminated with hydrogen atoms. Within the energy range of a few eV of the Fermi energy, all the SWCNT electrodes couple strongly only with the frontier molecular orbitals that are related to nonlocal pi bonds. Although the chirality of SWCNT electrodes has significant influences on this coupling and thus the molecular conductance, the diameter of electrodes, the distance, and the torsion angle between electrodes have only minor influences on the conductance, showing the advantage of using SWCNTs as the electrodes for molecular electronic devices.  相似文献   

10.
We carried out Hartree-Fock (HF) and density functional theory calculations for 61 compounds, the conjugated bases of carboxylic acids, phenols, and alcohols, and analyzed their acid-base behavior using molecular orbital (MO) energies and their dependence on solvent effects. Despite the well-known correlation between highest-occupied MO (HOMO) energies and pKa, we observed that HOMO energies are inadequate to describe the acid-base behavior of these compounds. Therefore, we established a criterion to identify the best frontier MO for describing pKa values and also to understand why the HOMO approach fails. The MO that fits our criterion provided very good correlations with pKa values, much better than those obtained by HOMO energies. Since they are the frontier molecular orbitals that drive the acid-base reactions in each compound, they were called frontier effective-for-reaction MOs, or FERMOs. By use of the FERMO concept, the reactions that are HOMO driven, and those that are not, can be better explained, independently from the calculation method used, as both HF and Kohn-Sham methodologies lead to the same FERMO.  相似文献   

11.
We investigated the electronic structures of the transition states of the oxidative addition, transmetalation, and reductive elimination steps in the catalytic cycle of the title reaction. The frontier orbital theory was surprisingly found to be applicable whereas any d orbitals of transition metals can be a main component of frontier orbitals because of their close energies. Visualizing the actually calculated HOMO and LUMO of the two parts of the transition structure of each step clearly demonstrated their orbital phase matching in favor of overlapping. The HOMO for the transmetalation step suggests that electron-donating ability of the carbon–metal bond of organometallic compounds (RMX) could control the reactivities of related cross-coupling reactions. The energies of the molecular orbitals having large amplitudes of the C–M bonding orbitals of RMX explain why the Suzuki–Miyaura cross-coupling reaction needs a base while the Kumada–Tamao and Negishi reactions take place without any bases.  相似文献   

12.
The electronic structure of highly crystalline picene films with a standing-up orientation grown epitaxially on the Ag(110) surface was investigated. Upon exposure to oxgen gas, O(2) molecules incorporate at the interstitial sites within the a-b plane of the film. Features related to the highest three occupied molecular orbitals shift toward a lower binding energy which results in the inactivation of traps and the reduction of the charge injection barrier by about 1 eV. It is suggested that the highest two picene orbitals are inverted due to the strong interactions between the singly occupied oxygen π orbital and the highest occupied orbital of picene.  相似文献   

13.
We have performed a density functional theory study about adsorption of one or two hydrogen atoms on zinc oxide nanoclusters (Zn12O12) in terms of energetic, geometric, and electronic properties. The results showed that the first H atom strongly prefers to be adsorbed on O atoms of the cluster while preferable site for the second one is atop the Zn atoms. This finding has been rationalized using frontier molecular orbitals. The HOMO/LUMO energy gap of the cluster is dramatically reduced from 4.04 to 0.81 eV upon the adsorption of one hydrogen atom, suggesting that it is transformed to n-type semiconductor ascribed to the large charge transfer from the hydrogen to the cluster. It was found that the H adsorptions in all cases would facilitate the field electron emission from the cluster surface by shifting the Fermi level to higher energies and decreasing the work function.  相似文献   

14.
曹飞  谭凯  林梦海 《物理化学学报》2010,26(11):3061-3066
采用密度泛函理论对六核钽、铑八面体纯簇及其混合簇的几何结构和电子性质进行了研究.计算结果表明:大部分钽铑混合簇稳定构型的对称性均较低,为C1或Cs点群,只有[Ta2Rh4Cl4H8(CN)6]4-团簇的稳定构型对称性较高,为C2h或C4v点群;混合簇的最高占据分子轨道(HOMO)与最低未占据分子轨道(LUMO)能隙(ΔEH-L)均较小,介于0.52-1.00eV之间;混合簇的前线轨道主要由骨架金属原子的d电子贡献,随着Rh原子替代Ta原子个数的递增,Ta—Rh键对混合簇稳定构型所起作用逐渐增加,Ta—Ta键所起作用减小,而Rh—Rh键为非键或反键性质.  相似文献   

15.
The electron-phonon coupling constants [l(B1u(HOMO-->LUMO))] in the photoinduced excited electronic states in fluoroacenes are estimated and compared with those in the monoanions (l(LUMO)) and cations (l(HOMO)). The l(B1u(HOMO-->LUMO)) values are much larger than the l(LUMO) and l(HOMO) values in fluoroacenes. Furthermore, the Coulomb pseudopotential mu* values for the excited electronic states are estimated to be smaller than those for the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) is the main reason why the electron-phonon coupling constants and the mu* values are larger and smaller, respectively, in the photoinduced excited electronic states than in the monoanions and cations. The possible electron pairing and Bose-Einstein condensation in the excited electronic states of fluoroacenes are discussed. Because of larger electron-phonon coupling constants and smaller mu* values in the excited electronic states than in the charged states, the conditions under which the electron-electron interactions become attractive can be more easily realized, in principle, in the excited electronic states than in the charged states in fluoroacenes. The l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution, even though the l(LUMO) and l(HOMO) values significantly increase by H-F substitution in acenes. Antibonding interactions between carbon and fluorine atoms in the HOMO and LUMO are the main reason why the l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution in acenes.  相似文献   

16.
Electron-phonon interactions in the monoanions of B, N-substituted acenes such as B(3)N(3)F(6) (1f) and B(5)N(5)F(8) (2f) are studied, and compared with those in the monoanions of B(3)N(3)H(6) (1h) and B(5)N(5)H(8) (2h), and B(3)N(3)D(6) (1d) and B(5)N(5)D(8) (2d). The low frequency modes around 500 cm(-1) as well as the frequency modes higher than 1000 cm(-1) strongly couple to the lowest unoccupied molecular orbitals (LUMO) in 1f and 2f. The total electron-phonon coupling constants (l(LUMO)) are estimated to be 2.710 and 2.054 eV for 1f and 2f, respectively, and those are estimated to be 0.342 and 0.235 eV for 1d and 2d, respectively, while those were estimated to be 0.340 and 0.237 eV for 1h and 2h, respectively. That is, the l(LUMO) value increases much more significantly by H-F substitution than by H-D substitution in B, N-substituted acenes. The larger displacements of B and N atoms in the vibronic active modes in 1f and 2f than those in 1d and 2d due to larger atomic mass of fluorine than that of deuterium, and the phase patterns difference between the LUMO in 1f and 2f, in which the atomic orbitals between N and its neighboring F atoms form strong sigma-antibonding interactions, and that in 1d and 2d, in which the atomic orbitals between two neighboring B and N atoms form weak pi-bonding and pi-antibonding interactions, are the main reason why the l(LUMO) value increases much more significantly by H-F substitution than by H-D substitution. The reorganization energies between the neutral molecules and the corresponding monoanions are estimated to be 0.122, 0.063, 0.733, and 0.830 eV for 1h, 2h, 1f, and 2f, respectively. Therefore, the estimated reorganization energies between the neutral molecules and the corresponding monoanions for 1f and 2f are much larger than those for 1h and 2h.  相似文献   

17.
Results of first principles local density total energy and atomic force calculations carried out for free C60 and XC60 (X=K, Rb, Cs) molecular clusters are reported. The optimization of the geometry results in the bond lengths between adjacent carbon atoms being 1.387 and 1.445 Å, which are in very good agreement with the latest X-ray diffraction values. Energy levels, charge distributions, and wavefunction characteristics are obtained and discussed. The results for C60 are in very good agreement with recently measured photoemission energy distribution curves (EDC) for the valence band states. The highest occupied molecular orbitals (HOMO) are found to be fully occupied Hu states and are 1.7 eV below the lowest unoccupied molecular orbitals (LUMO) which are of T1u symmetry. Similar results obtained for the XC60 clusters show that rigid-band-like behavior is found in the electronic structures after putting an alkali atom at the center of a C60 ball. In each case, the alkali atom is almost fully ionized with the transferred electron distributed over the surface shell of C60; the center region of the ball has very low charge density.  相似文献   

18.
19.
We report the electronic and vibrational spectroscopy of chrysene using resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. As an isomer of tetracene, chrysene contains a kink in the middle of the four fused hexagonal rings, which complicates not just the symmetry but, more importantly, the molecular orbitals and hence vibronic transitions. Incidentally, the two nearby electronically excited states of chrysene have the same symmetry, and vibronic coupling introduces no out-of-plane vibrational modes. As a result, the REMPI spectrum of chrysene contains essentially only in-plane ring deformation modes, similar to that of tetracene. However, density functional calculations using gaussian even after the inclusion of vibronic coupling can only duplicate the observed REMPI spectrum in a qualitative sense, and the agreement is considerably worse than our recent work on a few pericondensed polycyclic aromatic hydrocarbons and on tetracene. The ZEKE spectrum of chrysene via the origin band of the intermediate electronic state S(1), however, can be qualitatively reproduced by a straightforward Franck-Condon calculation. The ZEKE spectra from vibrationally excited states of the S(1), on the other hand, demonstrate some degree of mode selectivity: the overall intensity of the ZEKE spectrum can vary by an order of magnitude depending on the vibrational mode of the intermediate state. A scaling factor in the theoretical vibrational frequency for the cation is also needed to compare with the experimental result, unlike tetracene and pentacene.  相似文献   

20.
Abstract

Quantum-chemical calculations of the electronic structure of 1,3-, 1,4- and 2,3-diphospha-1,3-butadienes (DPB) and their derivatives with different substituents were performed. The MNDO method was used to describe the electronic structure of phosphaalkenes. The frontier orbitals of all unsubstituted DPB are of π-type. The highest occupied molecular orbital (HOMO) is delocalized through both double phosphorus-carbon bonds; the next occupied MO is a combination of two phosphorus lone pairs (n-MO). The HOMO of 2,3-DPB differs markedly from those of 1,3- and 1,4-isomers: the contributions of phosphorus and carbon p-orbitals are nearly equal, and the energy gap between HOMO and n-MO is very small (0.008 eV). The introduction of the electron-withdrawing substituents results in the reverse order of these MO's. In contrast with 1,3- and 1,4-isomers, the double bonds of 2,3-DPB are almost non-polar. Effect of substituents upon the electron density distribution are considered. The results indicate that orbitally controlled 1,4-additions should be characteristic for the derivatives of 1,3- and 1,4-DPB, similar to 1,3-butadiene. In case of 2,3-DPB, tendency to 1,4-addition should be lower; for its derivatives the reaction type depends greatly upon the electronic effects of substituents. In particular, reactions involving phosphorus lone pairs should be typical for the derivatives of 2,3-DPB with electron-withdrawing substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号