首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we analyze the worst-case performance of some heuristics for the symmetric travelling salesman problem. We show that the worst-case ratios of tour length produced by the savings and greedy heuristics to that of a minimum tour are bounded by [log2n]+1 and 0.5([log2n]+1) respectively, where n is the number of cities.  相似文献   

2.
In this paper we study the generalized savings heuristics of Golden, Levy and Dahl and propose several new heuristic procedures for solving the travelling purchaser problem. A comparative study of the four heuristics considered is provided.  相似文献   

3.
The asymmetric travelling salesman problem with replenishment arcs (RATSP), arising from work related to aircraft routing, is a generalisation of the well-known ATSP. In this paper, we introduce a polynomial size mixed-integer linear programming (MILP) formulation for the RATSP, and improve an existing exponential size ILP formulation of Zhu [The aircraft rotation problem, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 1994] by proposing two classes of stronger cuts. We present results that under certain conditions, these two classes of stronger cuts are facet-defining for the RATS polytope, and that ATSP facets can be lifted, to give RATSP facets. We implement our polyhedral findings and develop a Lagrangean relaxation (LR)-based branch-and-bound (BNB) algorithm for the RATSP, and compare this method with solving the polynomial size formulation using ILOG Cplex 9.0, using both randomly generated problems and aircraft routing problems. Finally we compare our methods with the existing method of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408-427]. It turns out that both of our methods are much faster than that of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408-427], and that the LR-based BNB method is more efficient for problems that resemble the aircraft rotation problems.  相似文献   

4.
The travelling salesman problem (TSP)   is one of the most prominent NP-hard combinatorial optimisation problems. After over fifty years of intense study, the TSP continues to be of broad theoretical and practical interest. Using a novel approach to empirical scaling analysis, which in principle is applicable to solvers for many other problems, we demonstrate that some of the most widely studied types of TSP instances tend to be much easier than expected from previous theoretical and empirical results. In particular, we show that the empirical median run-time required for finding optimal solutions to so-called random uniform Euclidean (RUE) instances – one of the most widely studied classes of TSP instances – scales substantially better than Θ(2n)Θ(2n) with the number n of cities to be visited. The Concorde solver, for which we achieved this result, is the best-performing exact TSP solver we are aware of, and has been applied to a broad range of real-world problems. Furthermore, we show that even when applied to a broad range of instances from the prominent TSPLIB benchmark collection for the TSP, Concorde exhibits run-times that are surprisingly consistent with our empirical model of Concorde’s scaling behaviour on RUE instances. This result suggests that the behaviour observed for the simple random structure underlying RUE is very similar to that obtained on the structured instances arising in various applications.  相似文献   

5.
We show that the travelling salesman problem is polynomially reducible to a bilevel toll optimization program. Based on natural bilevel programming techniques, we recover the lifted Miller-Tucker-Zemlin constraints. Next, we derive an O(n2) multi-commodity extension whose LP relaxation is comparable to the exponential formulation of Dantzig, Fulkerson and Johnson.  相似文献   

6.
The Asymmetric Travelling Salesman Problem with Replenishment Arcs (RATSP) is a new class of problems arising from work related to aircraft routing. Given a digraph with cost on the arcs, a solution of the RATSP, like that of the Asymmetric Travelling Salesman Problem, induces a directed tour in the graph which minimises total cost. However the tour must satisfy additional constraints: the arc set is partitioned into replenishment arcs and ordinary arcs, each node has a non-negative weight associated with it, and the tour cannot accumulate more than some weight limit before a replenishment arc must be used. To enforce this requirement, constraints are needed. We refer to these as replenishment constraints.In this paper, we review previous polyhedral results for the RATSP and related problems, then prove that two classes of constraints developed in V. Mak and N. Boland [Polyhedral results and exact algorithms for the asymmetric travelling salesman problem with replenishment arcs, Technical Report TR M05/03, School of Information Technology, Deakin University, 2005] are, under appropriate conditions, facet-defining for the RATS polytope.  相似文献   

7.
A comprehensive class of cutting planes for the symmetric travelling salesman problem (TSP) is proposed which contains the known comb inequalities, the path inequalities and the 3-star constraints as special cases. Its relation to the clique tree inequalities is discussed. The cutting planes are shown to be valid for a relaxed version of the TSP, the travelling salesman problem on a road network, and—under certain conditions—to define facets of the polyhedron associated with this problem.  相似文献   

8.
We describe how to transform an asymmetric traveling salesman problem into a symmetric one at the cost of almost doubled problem size. Use and consequences are discussed shortly.  相似文献   

9.
Although Branch-and-Bound (BnB) methods are among the most widely used techniques for solving hard problems, it is still a challenge to make these methods smarter. In this paper, we investigate iterative patching, a technique in which a fixed patching procedure is applied at each node of the BnB search tree for the Asymmetric Traveling Salesman Problem. Computational experiments show that iterative patching results in general in search trees that are smaller than the classical BnB trees, and that solution times are lower for usual random and sparse instances. Furthermore, it turns out that, on average, iterative patching with the Contract-or-Patch procedure of Glover, Gutin, Yeo and Zverovich (2001) and the Karp–Steele procedure are the fastest, and that ‘iterative’ Modified Karp–Steele patching generates the smallest search trees.  相似文献   

10.
POPMUSIC— Partial OPtimization Metaheuristic Under Special Intensification Conditions — is a template for tackling large problem instances. This metaheuristic has been shown to be very efficient for various hard combinatorial problems such as p-median, sum of squares clustering, vehicle routing, map labelling and location routing. A key point for treating large Travelling Salesman Problem (TSP) instances is to consider only a subset of edges connecting the cities. The main goal of this article is to present how to build a list of good candidate edges with a complexity lower than quadratic in the context of TSP instances given by a general function. The candidate edges are found with a technique exploiting tour merging and the POPMUSIC metaheuristic. When these candidate edges are provided to a good local search engine, high quality solutions can be found quite efficiently. The method is tested on TSP instances of up to several million cities with different structures (Euclidean uniform, clustered, 2D to 5D, grids, toroidal distances). Numerical results show that solutions of excellent quality can be obtained with an empirical complexity lower than quadratic without exploiting the geometrical properties of the instances.  相似文献   

11.
12.
N points in a square of area A may be sorted according to their images under a spacefilling mapping to give a tour of length at most 2√NA. If the points are statistically independent under a smooth distribution, with N large, then the tour will be roughly 25% longer than optimum (and a simple enhancement reduces this to 15%). The algorithm is easily coded: a complete BASIC program is included in the appendix. Since the algorithm consists essentially of sorting, points are easily added or removed. Our method may also be used with simple dynamic programming to solve TSP path problems.  相似文献   

13.
14.
In this paper we introduce a methodology for optimizing the expected cost of routing a single vehicle which has a probability of breaking down or failing to complete some of its tasks. More specifically, a calculus is devised for finding the optimal order in which each site should be visited.  相似文献   

15.
In this paper, new lower bounds for the asymmetric travelling salesman problem are presented, based on spanning arborescences. The new bounds are combined in an additive procedure whose theoretical performance is compared with that of the Balas and Christofides procedure (1981). Both procedures have been imbedded in a simple branch and bound algorithm and experimentally evaluated on hard test problems.  相似文献   

16.
Conditions are presented for the identification of (directed) arcs for the traveling salesman problem, that can be eliminated with at least one optimal solution remaining. The conditions are not based on lower or upper bounds; the presence of an identified arc in a solution implies that the solution is not 3-optimal. An example illustrates how to use the conditions.  相似文献   

17.
A parallel branch and bound algorithm that solves the asymmetric traveling salesman problem to optimality is described. The algorithm uses an assignment problem based lower bounding technique, subtour elimination branching rules, and a subtour patching algorithm as an upper bounding procedure. The algorithm is organized around a data flow framework for parallel branch and bound. The algorithm begins by converting the cost matrix to a sparser version in such a fashion as to retain the optimality of the final solution. Computational results are presented for three different classes of problem instances: (1) matrix elements drawn from a uniform distribution of integers for instances of size 250 to 10 000 cities, (2) instances of size 250 to 1000 cities that concentrate small elements in the upper left portion of the cost matrix, and (3) instances of size 300 to 3000 cities that are designed to confound neighborhood search heuristics.  相似文献   

18.
Genetic algorithms for the traveling salesman problem   总被引:2,自引:0,他引:2  
This paper is a survey of genetic algorithms for the traveling salesman problem. Genetic algorithms are randomized search techniques that simulate some of the processes observed in natural evolution. In this paper, a simple genetic algorithm is introduced, and various extensions are presented to solve the traveling salesman problem. Computational results are also reported for both random and classical problems taken from the operations research literature.  相似文献   

19.
20.
《Optimization》2012,61(5):787-814
We consider Travelling Salesman Problems (TSPs) where the cost of a tour is an algebraic composition of the cost coefficients that are elements of a totally ordered, commutative semigroup. Conditions for the cost matrix are stated which allow to solve these problems in polynomial time. In particular, we investigate conditions which guarantee that an optimal tour is pyramidal and can therefore be determined in O(n 2) time. Furthermore, we discuss TSPs with Brownian as well as those with left-upper-triangular cost matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号