首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, starting from a suitable generating function of a polynomial set, we show how to decide whether the considered polynomial set is d-orthogonal and, if it is so, how to determine the corresponding d-dimensional functional vector. Then, we apply the obtained results to some known and new d-orthogonal polynomial sets. For the known ones, we give new proofs for some already obtained results.  相似文献   

2.
In this paper, we characterize the d-symmetric d-orthogonal polynomials of Brenke type. We obtain two new families of polynomials and the moments of the corresponding d-dimensional vectors of linear functionals. Weights, providing integral representations for these moments, were also given.  相似文献   

3.
In this paper, we treat three questions related to the d-orthogonality of the Humbert polynomials. The first one consists to determinate the explicit expression of the d-dimensional functional vector for which the d-orthogonality holds. The second one is the investigation of the components of Humbert polynomial sequence. That allows us to introduce, as far as we know, new d-orthogonal polynomials generalizing the classical Jacobi ones. The third one consists to solve a characterization problem related to a generalized hypergeometric representation of the Humbert polynomials.  相似文献   

4.
It has been shown in Ferreira et al. (Adv. Appl. Math 31:61–85, [2003]), López and Temme (Methods Appl. Anal. 6:131–196, [1999]; J. Cpmput. Appl. Math. 133:623–633, [2001]) that the three lower levels of the Askey table of hypergeometric orthogonal polynomials are connected by means of asymptotic expansions. In this paper we continue with that investigation and establish asymptotic connections between the fourth level and the two lower levels: we derive twelve asymptotic expansions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of Hermite, Charlier and Laguerre polynomials. From these expansions, several limits between polynomials are derived. Some numerical experiments give an idea about the accuracy of the approximations and, in particular, about the accuracy in the approximation of the zeros of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of the zeros of the Hermite, Charlier and Laguerre polynomials.   相似文献   

5.
We obtain the spectral decomposition of the hypergeometric differential operator on the contour Re z = 1/2. (The multiplicity of the spectrum of this operator is 2.) As a result, we obtain a new integral transform different from the Jacobi (or Olevskii) transform. We also construct an 3 F 2-orthogonal basis in a space of functions ranging in ℂ2. The basis lies in the analytic continuation of continuous dual Hahn polynomials with respect to the index n of a polynomial.__________Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 39, No. 2, pp. 31–46, 2005Original Russian Text Copyright © by Yu. A. Neretin  相似文献   

6.
In this paper, we give some properties of the zeros of d-symmetric d-orthogonal polynomials and we localize these zeros on (d+1) rays emanating from the origin. We apply the obtained results to some known polynomials. In particular, we partially solve the conjecture about the zeros of the Humbert polynomials stated by Milovanovi? and Dordevi? [G.V. Milovanovi?, G.B. Dordevi?, On some properties of Humbert's polynomials, II, Ser. Math. Inform. 6 (1991) 23-30]. A study of the eigenvalues of a particular banded Hessenberg matrix is done.  相似文献   

7.
In this paper, we present several properties of the centroid of the zeroes of a polynomial. As an illustration, we apply these results to the d-orthogonal polynomials. Finally, we provide the relationship between different centroids of a general monic polynomial and its image under a certain Laguerre–type operator.  相似文献   

8.
In this paper, we give a closed-form expression of the inversion and the connection coefficients for general basic hypergeometric polynomial sets using some known inverse relations. We derive expansion formulas corresponding to all the families within the q-Askey scheme and we connect some d-orthogonal basic hypergeometric polynomials.  相似文献   

9.
da Rocha  Zélia 《Numerical Algorithms》1999,20(2-3):139-164
This paper is concerned with the Shohat-Favard, Chebyshev and Modified Chebyshev methods for d-orthogonal polynomial sequences d∈ℕ. Shohat-Favard’s method is presented from the concept of dual sequence of a sequence of polynomials. We deduce the recurrence relations for the Chebyshev and the Modified Chebyshev methods for every d∈ℕ. The three methods are implemented in the Mathematica programming language. We show several formal and numerical tests realized with the software developed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
We give representations of the Wilson polynomials and the continuous dual Hahn polynomials in terms of multidimensional generalizations of Barnes type integrals. Motivation is to study the Barnes type integrals from the viewpoint of the de Rham theory and holonomic systems.  相似文献   

11.
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre polynomials—can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.  相似文献   

12.
Jacobi polynomials are mapped onto the continuous Hahn polynomials by the Fourier transform, and the orthogonality relations for the continuous Hahn polynomials then follow from the orthogonality relations for the Jacobi polynomials and the Parseval formula. In a special case this relation dates back to work by Bateman in 1933 and we follow a part of the historical development for these polynomials. Some applications of this relation are given.

  相似文献   


13.
14.
We prove that any set of polynomials orthogonal with respect to a discrete measure supported on equidistant points contained in a half line satisfy a second order difference equation. We also give a discrete analogue of the discriminant and give a general formula for the discrete discriminant of a discrete orthogonal polynomial. As an application we give explicit evaluations of the discrete discriminants of the Meixner and the Hahn polynomials. A difference analogue of the Bethe Ansatz equations is also mentioned.Research partially supported by NSF grant DMS 99-70865  相似文献   

15.
16.
Drewnowski and Paúl proved in [L. Drewnowski, P.J. Paúl, The Nikodým property for ideals of sets defined by matrix summability methods, Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 94 (2000) 485-503] that for any strongly nonatomic submeasure η on the power set P(N) of N the ideal Z(η)={NP(N)|η(N)=0} has the Nikodym property (NP); in particular, this result applies to densities dA defined by strongly regular matrices A. Grahame Bennett and the authors stated in [G. Bennett, J. Boos, T. Leiger, Sequences of 0's and 1's, Studia Math. 149 (2002) 75-99] that the strong null domain 0|A| of any strongly regular matrix A has the Hahn property (HP). Moreover, Stuart and Abraham [C.E. Stuart, P. Abraham, Generalizations of the Nikodym boundedness and Vitali-Hahn-Saks theorems, J. Math. Anal. Appl. 300 (2) (2004) 351-361] pointed out that the said results are in some sense dual and that the last one follows from the first one by considering the density dA (defined by A) as submeasure on P(N) and the ideal Z(dA) as well by identifying P(N) with the set χ of sequences of 0's and 1's. In this paper we aim at a better understanding of the intimated duality and at a characterization of those members of special classes of matrices A such that Z(dA) has NP (equivalently, 0|A| has HP).  相似文献   

17.
Uniform asymptotic formulas are obtained for the Stieltjes-Wigert polynomial, the q−1-Hermite polynomial and the q-Laguerre polynomial as the degree of the polynomial tends to infinity. In these formulas, the q-Airy polynomial, defined by truncating the q-Airy function, plays a significant role. While the standard Airy function, used frequently in the uniform asymptotic formulas for classical orthogonal polynomials, behaves like the exponential function on one side and the trigonometric functions on the other side of an extreme zero, the q-Airy polynomial behaves like the q-Airy function on one side and the q-Theta function on the other side. The last two special functions are involved in the local asymptotic formulas of the q-orthogonal polynomials. It seems therefore reasonable to expect that the q-Airy polynomial will play an important role in the asymptotic theory of the q-orthogonal polynomials.  相似文献   

18.
In this paper, extensions of several relations linking differences of bivariate discrete orthogonal polynomials and polynomials themselves are given, by using an appropriate vector–matrix notation. Three-term recurrence relations are presented for the partial differences of the monic polynomial solutions of admissible second order partial difference equation of hypergeometric type. Structure relations, difference representations as well as lowering and raising operators are obtained. Finally, expressions for all matrix coefficients appearing in these finite-type relations are explicitly presented for a finite set of Hahn and Kravchuk orthogonal polynomials.  相似文献   

19.
This contribution deals with multiple orthogonal polynomials of type II with respect to q-discrete measures (q-Hahn measures). In addition, we show that this family of multiple orthogonal polynomials has a lowering operator, and raising operators, as well as a Rodrigues type formula. The combination of lowering and raising operators leads to a third order q-difference equation when two orthogonality conditions are considered. An explicit expression of this q-difference equation will be given. Indeed, this q-difference equation relates polynomials with a given degree evaluated at four consecutive non-uniformed distributed points, which makes these polynomials interesting from the point of view of bispectral problems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号