首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In [M. Kato and L. Maligranda, On James and Jordan–von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001) 457–465], it is an open problem to compute the James constant of the dual space of two dimensional Lorentz sequence space d(2)(w,q). In this paper, we shall determine the dual norm of d(2)(w,q) and completely compute the James constant of d(2)(w,q).  相似文献   

2.
In this paper we give an effective criterion as to when a positive integer q is the order of an automorphism of a smooth hypersurface of dimension n and degree d, for every d ≥ 3, n ≥ 2, (n, d) ≠ (2, 4), and gcd(q, d) = gcd(q, d ? 1) = 1. This allows us to give a complete criterion in the case where q = p is a prime number. In particular, we show the following result: If X is a smooth hypersurface of dimension n and degree d admitting an automorphism of prime order p then p < (d ? 1) n+1; and if p > (d ? 1) n then X is isomorphic to the Klein hypersurface, n = 2 or n + 2 is prime, and p = Φ n+2(1 ? d) where Φ n+2 is the (n+2)-th cyclotomic polynomial. Finally, we provide some applications to intermediate jacobians of Klein hypersurfaces.  相似文献   

3.
We study the blow-up and/or global existence of the following p-Laplacian evolution equation with variable source power
$${s_j} = {\beta _j} + \overline {{\beta _{n - j}}}p$$
where Ω is either a bounded domain or the whole space ? N , q(x) is a positive and continuous function defined in Ω with 0 < q ? = inf q(x) ? q(x) ? sup q(x) = q+ < ∞. It is demonstrated that the equation with variable source power has much richer dynamics with interesting phenomena which depends on the interplay of q(x) and the structure of spatial domain Ω, compared with the case of constant source power. For the case that Ω is a bounded domain, the exponent p ? 1 plays a crucial role. If q+ > p ? 1, there exist blow-up solutions, while if q + < p ? 1, all the solutions are global. If q ? > p ? 1, there exist global solutions, while for given q ? < p ? 1 < q +, there exist some function q(x) and Ω such that all nontrivial solutions will blow up, which is called the Fujita phenomenon. For the case Ω = ? N , the Fujita phenomenon occurs if 1 < q ? ? q + ? p ? 1 + p/N, while if q ? > p ? 1 + p/N, there exist global solutions.
  相似文献   

4.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s–Rényi random graph G(n, d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n, d/n) is d(1?o(1)), it contains many nodes of degree of order (log n) / (log log n). The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n, d/n) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n 1+Ω(1 / log log n) with high probability. High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including coloring. Almost all known sufficient conditions in terms of number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work we consider sampling q-colorings and show that for every d < ∞ there exists q(d) < ∞ such that for all qq(d) the mixing time of the Gibbs sampling on G(n, d/n) is polynomial in n with high probability. Our results are the first polynomial time mixing results proven for the coloring model on G(n, d/n) for d > 1 where the number of colors does not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). In previous work we have shown that similar results hold for the ferromagnetic Ising model. However, the proof for the Ising model crucially relied on monotonicity arguments and the “Weitz tree”, both of which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erd?s–Rényi random graphs, block dynamics, spatial decay properties and coupling arguments. Our results give the first polynomial-time algorithm to approximately sample colorings on G(n, d/n) with a constant number of colors. They extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which there exists an α > 0 such that every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub-graph is the union of a tree and at most O(1) edges and where each simple path Γ of length O(log n) satisfies ${\sum_{u \in \Gamma}\sum_{v \neq u}\alpha^{d(u,v)} = O({\rm log} n)}$ . The results also generalize to the hard-core model at low fugacity and to general models of soft constraints at high temperatures.  相似文献   

5.
Let be a fractional ARIMA(p,d,q) process with partial autocorrelation function α(·). In this paper, we prove that if d∈(−1/2,0) then |α(n)|∼|d|/n as n→∞. This extends the previous result for the case 0<d<1/2.  相似文献   

6.
The dimension of a combinatorial design ${{\mathcal D}}$ over a finite field F = GF(q) was defined in (Tonchev, Des Codes Cryptogr 17:121–128, 1999) as the minimum dimension of a linear code over F that contains the blocks of ${{\mathcal D}}$ as supports of nonzero codewords. There it was proved that, for any prime power q and any integer n ≥ 2, the dimension over F of a design ${{\mathcal D}}$ that has the same parameters as the complement of a classical point-hyperplane design PG n-1(n, q) or AG n-1(n, q) is greater than or equal to n + 1, with equality if and only if ${{\mathcal D}}$ is isomorphic to the complement of the classical design. It is the aim of the present paper to generalize this Hamada type characterization of the classical point-hyperplane designs in terms of associated codes over F = GF(q) to a characterization of all classical geometric designs PG d (n, q), where 1 ≤ dn ? 1, in terms of associated codes defined over some extension field E?=?GF(q t ) of F. In the affine case, we conjecture an analogous result and reduce this to a purely geometric conjecture concerning the embedding of simple designs with the parameters of AG d (n, q) into PG(n, q). We settle this problem in the affirmative and thus obtain a Hamada type characterization of AG d (n, q) for d = 1 and for d > (n ? 2)/2.  相似文献   

7.
We construct an iterative procedure for finding a change of variables to reduce the linear system. x′ = Ax + P(?)x ?′ = ω where P(?) is l times differentiable, to a system with constant coefficients. Under certain conditions on ω and the eigenvalues of A we use the technique of accelerated convergence to overcome the difficulty of small divisors and show that this sequence of transformations converges to a quasiperiodic transformation. As is always the case in such problems, there is an inevitable loss of derivatives. The best previous result, due to Mitropol'skǐi and Samoǐlenko required l>k(k ? 1)(2 ? k)[k(m + τ) + 2m + 2], where κ is the exponent of the accelerated convergence (1 < κ < 2), and τ is a constant occurring in the relationship between the eigenvalues of A and ω. Our result requires only that l>τ.  相似文献   

8.
We report on recent results concerning designs with the same parameters as the classical geometric designs PG d (n, q) formed by the points and d-dimensional subspaces of the n-dimensional projective space PG(n, q) over the field GF(q) with q elements, where 1 ???d ???n?1. The corresponding case of designs with the same parameters as the classical geometric designs AG d (n, q) formed by the points and d-dimensional subspaces of the n-dimensional affine space AG(n, q) will also be discussed, albeit in less detail.  相似文献   

9.
It is well-known that the number of 2-designs with the parameters of a classical point-hyperplane design PG n-1(n, q) grows exponentially. Here we extend this result to the number of 2-designs with the parameters of PG d (n, q), where 2 ≤ d ≤ n ? 1. We also establish a characterization of the classical geometric designs in terms of hyperplanes and, in the special case d = 2, also in terms of lines. Finally, we shall discuss some interesting configurations of hyperplanes arising in designs with geometric parameters.  相似文献   

10.
LetS(q, d) be the maximal numberv such that, for every general position linear maph: Δ(q?1)(d+1)R d, there exist at leastv different collections {Δ t1, ..., Δ t q} of disjoint faces of Δ(q?1)(d+1) with the property thatf t1) ∩ ... ∩f t q) ≠ Ø. Sierksma's conjecture is thatS(q, d)=((q?1)!) d . The following lower bound (Theorem 1) is proved assuming thatq is a prime number: $$S(q,d) \geqslant \frac{1}{{(q - 1)!}}\left( {\frac{q}{2}} \right)^{{{((q - 1)(d + 1))} \mathord{\left/ {\vphantom {{((q - 1)(d + 1))} 2}} \right. \kern-\nulldelimiterspace} 2}} .$$ Using the same technique we obtain (Theorem 2) a lower bound for the number of different splittings of a “generic” necklace.  相似文献   

11.
We denote the distance between vertices x and y of a graph by d(x, y), and pij(x, y) = ∥ {z : d(x, z) = i, d(y, z) = j} ∥. The (s, q, d)-projective graph is the graph having the s-dimensional subspaces of a d-dimensional vector space over GF(q) as vertex set, and two vertices x, y adjacent iff dim(x ? y) = s ? 1. These graphs are regular graphs. Also, there exist integers λ and μ > 4 so that μ is a perfect square, p11(x, y) = λ whenever d(x, y) = 1, and p11(x, y) = μ whenever d(x, y) = 2. The (s, q, d)-projective graphs where 2d3 ≤ s < d ? 2 and (s, q, d) ≠ (2d3, 2, d), are characterized by the above conditions together with the property that there exists an integer r satisfying certain inequalities.  相似文献   

12.
Sufficient conditions are given for the L2-stability of a class of feedback systems consisting of a linear operator G and a nonlinear gain function, either odd monotone or restricted by a power-law, in cascade, in a negative feedback loop. The criterion takes the form of a frequency-domain inequality, Re[1 + Z()] G() ? δ > 0 ?ω? (?∞, +∞), where Z() is given by, Z() = β[Y1() + Y2()] + (1 ? β)[Y3() ? Y3(?)], with 0 ? β ? 1 and the functions y1(·), y2(·) and y3(·) satisfying the time-domain inequalities, ?∞+∞¦y1(t) + y2(t)¦ dt ? 1 ? ?, y1(·) = 0, t < 0, y2(·) = 0, t > 0 and ? > 0, and 0¦y3(t)¦ dt < 12c2, c2 being a constant depending on the order of the power-law restricting the nonlinear function. The criterion is derived using Zames' passive operator theory and is shown to be more general than the existing criteria.  相似文献   

13.
Let −(·,z)D+q be a differential operator in L2(0,∞) whose leading coefficient contains the eigenvalue parameter z. For the case that ω(·,z) has the particular form
  相似文献   

14.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

15.
《Journal of Complexity》2001,17(2):467-492
We investigate optimal non-linear approximations of multivariate periodic functions with mixed smoothness. In particular, we study optimal approximation using sets of finite cardinality (as measured by the classical entropy number), as well as sets of finite pseudo-dimension (as measured by the non-linear widths introduced by Ratsaby and Maiorov). Approximation error is measured in the Lq(Td)-sense, where Td is the d-dimensional torus. The functions to be approximated are in the unit ball SBrpθ of the mixed smoothness Besov space or in the unit ball SWrp of the mixed smoothness Sobolev space. For 1<p, q<∞, 0<θ⩽∞ and r>0 satisfying some restrictions, we establish asymptotic orders of these quantities, as well as construct asymptotically optimal approximation algorithms. We particularly prove that for either r>1/p and θp or r>(1/p−1/q)+ and θ⩾min{q, 2}, the asymptotic orders of these quantities for the Besov class SBrpθ are both nr(log n)(d−1)(r+1/2−1/θ).  相似文献   

16.
We obtain estimates for the discrepancy of the sequence (xs(d)(q;n))n=0, where s(d)(q;n) denotes the sum of the dth powers of the q-ary digits of the nonnegative integer n and x is an irrational number of finite approximation type. Furthermore metric results for a similar type of sequences are given.  相似文献   

17.
A classical binary Preparata code P2(m) is a nonlinear (2m+1,22(2m-1-m),6)-code, where m is odd. It has a linear representation over the ring Z4 [Hammons et al., The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301-319]. Here for any q=2l>2 and any m such that (m,q-1)=1 a nonlinear code Pq(m) over the field F=GF(q) with parameters (q(Δ+1),q2(Δ-m),d?3q), where Δ=(qm-1)/(q-1), is constructed. If d=3q this set of parameters generalizes that of P2(m). The equality d=3q is established in the following cases: (1) for a series of initial admissible values q and m such that qm<2100; (2) for m=3,4 and any admissible q, and (3) for admissible q and m such that there exists a number m1 with m1|m and d(Pq(m1))=3q. We apply the approach of [Nechaev and Kuzmin, Linearly presentable codes, Proceedings of the 1996 IEEE International Symposium Information Theory and Application Victoria, BC, Canada 1996, pp. 31-34] the code P is a Reed-Solomon representation of a linear over the Galois ring R=GR(q2,4) code P dual to a linear code K with parameters near to those of generalized linear Kerdock code over R.  相似文献   

18.
In this paper, we consider a q-difference equation $$\sum_{j=0}^{k}\sum_{t=1}^{\infty}C_{t,j}(z)(y(q^jz))^{t}=G(z)$$ in the complex field ${\mathbb C,}$ where C t,j (z) and G(z) have a h 1 order pole and a h 2 order pole at z = 0, respectively. Under the case 0 < |q| < 1 or |q| = 1, we give the existence of local analytic solutions for the above equation by using small divisor theory in dynamical systems.  相似文献   

19.
To characterize Hermitian varieties in projective space PG(d, q) of d dimensions over the Galois field GF(q), it is necessary to find those subsets K for which there exists a fixed integer n satisfying (i) 3 ? n ? q ? 1, (ii) every line meets K in 1, n or q + 1 points. K is called singular or non-singular as there does or does not exist a point P for which every line through P meets K in 1 or q + 1 points. For q odd, a non-singular K is a non-singular Hermitian variety (M. Tallini Scafati “Caratterizzazione grafica delle forme hermitiane di un Sr, qRend. Mat. Appl.26 (1967), 273–303). For q even, q > 4 and d = 3, a non-singular K is a Hermitian surface or “looks like” the projection of a non-singular quadric in PG(4, q) (J.W.P. Hirschfeld and J.A. Thas “Sets of type (1, n, q + 1) in PG(d, q)” to appear). The case q = 4 is quite exceptional, since the complements of these sets K form a projective geometry code, a (21, 11) code for d = 2 and an (85, 24) code for d = 3. The full list of these sets is given.  相似文献   

20.
For a Banach space Y, the question of whether Lp(μ,Y) has an unconditional basis if 1<p<∞ and Y has unconditional basis, stood unsolved for a long time and was answered in the negative by Aldous. In this work we prove a weaker, positive result related to this question. We show that if (yj) is a basis of Y and (di) is a martingale difference sequence spanning Lp(μ) then the sequence (diyj) is a basis of Lp(μ,Y) for 1?p<∞. Moreover, if 1<p<∞ and (yj) is unconditional then (diyj) is strictly dominated by an unconditional tensor product basis. In addition, for 1<p<∞, we show that if (di)⊂Lp(μ) is a martingale difference sequence then there exists a constant K>0 so that
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号