首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni(+)(CO(2))(n), Ni(+)(CO(2))(n)Ar, Ni(+)(CO(2))(n)Ne, and Ni(+)(O(2))(CO(2))(n) complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected in a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy. Photofragmentation proceeds exclusively through the loss of intact CO(2) molecules from Ni(+)(CO(2))(n) and Ni(+)(O(2))(CO(2))(n) complexes, and by elimination of the noble gas atom from Ni(+)(CO(2))(n)Ar and Ni(+)(CO(2))(n)Ne. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of CO(2). Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO(2), consistent with structures having linear Ni(+)-O=C=O configurations. Fragmentation of larger Ni(+)(CO(2))(n) clusters terminates at the size of n=4, and new vibrational bands assigned to external ligands are observed for n> or =5. These combined observations indicate that the coordination number for CO(2) molecules around Ni(+) is exactly four. Trends in the loss channels and spectra of Ni(+)(O(2))(CO(2))(n) clusters suggest that each oxygen atom occupies a different coordination site around a four-coordinate metal ion in these complexes. The spectra of larger Ni(+)(CO(2))(n) clusters provide evidence for an intracluster insertion reaction assisted by solvation, producing a metal oxide-carbonyl species as the reaction product.  相似文献   

2.
V+(N2)n clusters are generated in a pulsed nozzle laser vaporization source. Clusters in the size range of n = 3-7 are mass selected and investigated via infrared photodissociation spectroscopy in the N-N stretch region. The IR forbidden N-N stretch of free nitrogen becomes strongly IR active when the molecule is bound to the metal ion. Photodissociation proceeds through the elimination of intact N2 molecules for all cluster sizes, and the fragmentation patterns reveal the coordination number of V+ to be six. The dissociation process is enhanced on vibrational resonances and the IR spectrum is obtained by monitoring the fragmentation yield as a function of wavelength. Vibrational bands are red-shifted with respect to the free nitrogen N-N stretch, in the same way seen for the C-O stretch in transition metal carbonyls. Comparisons between the measured IR spectra and the predictions of density functional theory provide new insight into the structure and bonding of these metal ion complexes.  相似文献   

3.
Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 <-- nu1' = 1 transition. Rotational structure in the resulting vibrational action spectrum confirms that V+(OCO) is linear and gives nu1' = 2392.0 cm(-1). The OCO antisymmetric stretch frequency in the excited electronic state is nu1' = 2368 cm(-1). Both show a blue shift from the value in free CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.  相似文献   

4.
Infrared photodissociation spectroscopy in the N-N stretching region is reported for gas-phase Nb+(N2)n complexes (n=3-16). The coordination of nitrogen to the metal cation causes the IR-forbidden N-N stretch of N2 to become active in these complexes. Fragmentation occurs by the loss of intact N2 molecules, and the yield as a function of laser wavelength produces an IR excitation spectrum. The dissociation patterns indicate that Nb+ has a coordination of six ligands. The infrared spectra for all complexes contain bands red-shifted from the N-N stretch in free nitrogen, consistent with ligand-metal charge-transfer interactions such as those familiar for metal carbonyl complexes. Using density functional theory, we investigated the structures and ground electronic states for each of the small cluster sizes. Theory indicates that binding to the low-spin triplet excited state of the metal ion becomes progressively more favorable than binding to its high-spin quintet ground state as additional ligands are added to the cluster. Although the quintet state is the ground state for the n=1-4 complexes, IR spectroscopy confirms that the low-spin triplet electronic state becomes the ground state for the n=5 and 6 complexes. The n=4 complex has a square-planar structure, familiar for high-spin d4 complexes in the condensed phase. The n=5 complex has a geometry that is nearly a square pyramid, while the n=6 complex has a structure close to octahedral.  相似文献   

5.
Au+(CO)n complexes are produced in the gas phase via pulsed laser vaporization, expanded in a supersonic jet, and detected with a reflectron time-of-flight mass spectrometer. Complexes up to n = 12 are observed, with mass channels corresponding to the n = 2 and n = 4 showing enhanced intensity. To investigate coordination and structure, individual complexes are mass-selected and probed with infrared photodissociation spectroscopy. Spectra in the carbonyl stretching region are measured for the n = 3-7 species, but no photodissociation is observed for n = 1, 2 due to the strong metal cation-ligand binding. The carbonyl stretch in these systems is blue-shifted 50-100 cm-1 with respect to the free CO vibration (2143 cm-1), providing evidence that these species are so-called "nonclassical" metal carbonyls. Theory at the MP2 and CCSD(T) levels provides structures for these complexes and predicted spectra to compare to the experiment. Excellent agreement is obtained between experiment and theory, establishing that the n = 3 complex is trigonal planar and the n = 4 complex is tetrahedral.  相似文献   

6.
Si(CO)(n)(+) and Si(CO)(n)(+)Ar complexes are produced via laser vaporization with a pulsed nozzle source and cooled in a supersonic beam. The ions are mass selected in a reflectron time-of-flight mass spectrometer and studied with infrared laser photodissociation spectroscopy near the free molecular CO vibration (2143 cm(-1)). Si(CO)(n)(+) complexes larger than n = 2 fragment by the loss of CO, whereas Si(CO)(n)(+)Ar complexes fragment by the loss of argon. All clusters have resonances near the free molecular CO stretch that provide distinctive patterns from which information on their structure and bonding can be obtained. The number of infrared-active bands, their frequency positions, and relative intensities indicate that larger species consist of an asymmetrically coordinated Si(CO)(2)(+) core with additional CO ligands attached via van der Waals interactions. Density functional theory computations are carried out in support of the experimental spectra.  相似文献   

7.
Hydrated alkali metal ion-phenol complexes were studied to model these species in aqueous solution for M=Na and K. IR predissociation spectroscopy in the O-H stretch region was used to analyze the structures of M+(Phenol)(H2O)n cluster ions, for n = 1-4. The onset of hydrogen bonding was observed to occur at n=4. Ab initio calculations were used to qualitatively explore the types of hydrogen-bonded structures of the M+(Phenol)(H2O)4 isomers. By combining the ab initio calculations and IR spectra, several different structures were identified for each metal ion. In contrast to benzene, detailed in a previous study of Na+(Benzene)n(H2O)m [J. Chem. Phys. 110, 8429 (1999)], phenol is able to bind directly to Na+ even in the presence of four waters. This is likely the result of the sigma-type interaction between the phenol oxygen and the ion. With K+, the dominant isomers are those in which the phenol O-H group is involved in a hydrogen bond with the water molecules, while with Na+, the dominant isomers are those in which the phenol O-H group is free and the water molecules are hydrogen-bonded to each other. Spectra and ab initio calculations for the M+(Phenol)Ar cluster ions for M=Na and K are reported to characterize the free phenol O-H stretch in the M+(Phenol) complex. While pi-type configurations were observed for binary M+(Phenol) complexes, sigma-type configurations appear to dominate the hydrated cluster ions.  相似文献   

8.
The electrostatic V+(OCO) complex has a vibrationally resolved photodissociation spectrum in the visible. Photodissociation produces V+ + CO2 (nonreactive pathway) and VO+ +CO (reactive pathway). Production of VO+ is energetically favored, but spin forbidden. One-photon dissociation studies confirm mode selectivity observed by Lessen et al. [J. Chem. Phys. 95, 1414 (1991)]: excitation of one quantum of rocking motion enhances VO+ production by >30%. Branching ratio measurements in one-photon dissociation are extended to higher energy. The effect of OCO antisymmetric stretch vibrations on reactivity is investigated using vibrationally mediated photodissociation, in which the OCO antisymmetric stretch is excited at 2390.9 cm(-1). Vibrationally excited molecules are then dissociated in the visible. Seven vibronic bands are investigated, involving the antisymmetric stretch alone and in combination with the CO2 bend, the V+(OCO) stretch and rock. Exciting the antisymmetric stretch leads to a approximately 15% increase in the reactive VO+ channel, compared to other states at similar energy. Combination bands involving the antisymmetric stretch all show slightly higher reactivity. Electronic structure calculations were performed to characterize the dissociation pathways and excited electronic states of V+(OCO). The geometries of reactants, products, and transition states and relative energies of quintet and triplet states were determined using hybrid density functional theory; energies were also calculated using the coupled cluster with single, double and perturbative triple excitations method. In addition, time-dependent density functional theory calculations were performed to predict the excited electronic states of quintet and triplet V+(OCO). Spin-orbit coupling of quintet states to triplet states was calculated and used to compute intersystem crossing rates, which reproduce many of the observed mode selective trends. The V+--OCO stretch and OCO antisymmetric stretch appear to enhance reactivity by increasing the intersystem crossing rate.  相似文献   

9.
Singly and doubly charged manganese-water cations, and their mixed complexes with attached argon atoms, are produced by laser vaporization in a pulsed nozzle source. Complexes of the form Mn(+)(H(2)O)Ar(n) (n = 1-4) and Mn(2+)(H(2)O)Ar(4) are studied via mass-selected infrared photodissociation spectroscopy, detected in the mass channels corresponding to the elimination of argon. Sharp resonances are detected for all complexes in the region of the symmetric and asymmetric stretch vibrations of water. With the guidance of density functional theory computations, specific vibrational band resonances are assigned to complexes having different argon attachment configurations. In the small singly charged complexes, argon adds first to the metal ion site and later in larger clusters to the hydrogens of water. The doubly charged complex has argon only on the metal ion. Vibrations in all of these complexes are shifted to lower frequencies than those of the free water molecule. These shifts are greater when argon is attached to hydrogen and also greater for the dication compared to the singly charged species. Cation binding also causes the IR intensities for water vibrations to be much greater than those of the free water molecule, and the relative intensities are greater for the symmetric stretch than the asymmetric stretch. This latter effect is also enhanced for the dication complex.  相似文献   

10.
Helium nanodroplet isolation and a tunable quantum cascade laser are used to probe the fundamental CO stretch bands of aluminum carbonyl complexes, Al-(CO)(n) (n ≤ 5). The droplets are doped with single aluminum atoms via the resistive heating of an aluminum wetted tantalum wire. The downstream sequential pick-up of CO molecules leads to the rapid formation and cooling of Al-(CO)(n) clusters within the droplets. Near 1900 cm(-1), rotational fine structure is resolved in bands that are assigned to the CO stretch of a linear (2)Π(1/2) Al-CO species and the asymmetric and symmetric CO stretch vibrations of a planar C(2v) Al-(CO)(2) complex in a (2)B(1) electronic state. Bands corresponding to clusters with n ≥ 3 lack resolved rotational fine structure; nevertheless, the small frequency shifts from the n = 2 bands indicate that these clusters consist of an Al-(CO)(2) core with additional CO molecules attached via van der Waals interactions. A second n = 2 band is observed near the CO stretch of Al-CO, indicating a local minimum on the n = 2 potential consisting of an "unreacted" (Al-CO)-CO cluster. The line width of this band is ~0.3 cm(-1), which is about 30 times broader than the transitions within the Al-CO band. The additional broadening is consistent with a homogeneous mechanism corresponding to a rapid vibrational excitation induced reaction within the (Al-CO)-CO cluster to form the covalently bonded Al-(CO)(2) complex. Ab initio CCSD(T) calculations and natural bond orbital (NBO) analyses are carried out to investigate the nature of the bonding in the n = 1, 2 complexes. The NBO calculations show that both π-donation (from the occupied aluminum p orbital into a π* antibonding CO orbital) and σ-donation (from CO into the empty aluminum p orbitals) play a significant role in the bonding, analogous to transition-metal carbonyl complexes. The large red shift observed for the CO stretch vibrations is consistent with this bonding analysis.  相似文献   

11.
In support of mass-selected infrared photodissociation (IRPD) spectroscopy experiments, coupled-cluster methods including all single and double excitations (CCSD) and a perturbative contribution from connected triple excitations [CCSD(T)] have been used to study the V+(H2O) and ArV+(H2O) complexes. Equilibrium geometries, harmonic vibrational frequencies, and dissociation energies were computed for the four lowest-lying quintet states (5A1, 5A2, 5B1, and 5B2), all of which appear within a 6 kcal mol(-1) energy range. Moreover, anharmonic vibrational analyses with complete quartic force fields were executed for the 5A1 states of V+(H2O) and ArV+(H2O). Two different basis sets were used: a Wachters+f V[8s6p4d1f] basis with triple-zeta plus polarization (TZP) for O, H, and Ar; and an Ahlrichs QZVPP V[11s6p5d3f2g] and Ar[9s6p4d2f1g] basis with aug-cc-pVQZ for O and H. The ground state is predicted to be 5A1 for V+(H2O), but argon tagging changes the lowest-lying state to 5B1 for ArV+(H2O). Our computations show an opening of 2 degrees -3 degrees in the equilibrium bond angle of H2O due to its interaction with the metal ion. Zero-point vibrational averaging increases the effective bond angle further by 2.0 degrees -2.5 degrees, mostly because of off-axis motion of the heavy vanadium atom rather than changes in the water bending potential. The total theoretical shift in the bond angle of about +4 degrees is significantly less than the widening near 9 degrees deduced from IRPD experiments. The binding energies (D0) for the successive addition of H2O and Ar to the vanadium cation are 36.2 and 9.4 kcal mol(-1), respectively.  相似文献   

12.
To clarify the electronic spectral properties of uranyl(V) complexes systematically, we measured absorption spectra of three types of pure uranyl(V) complexes: [U(V)O2(dbm)2DMSO]-, [U(V)O2(saloph)DMSO]-, and [U(V)O2(CO3)3]5- (dbm = dibenzoylmethanate, saloph = N,N'-disalicylidene-o-phenylenediaminate, DMSO = dimethyl sulfoxide). As a result, it was found that these uranyl(V) complexes have characteristic absorption bands in the visible-near-infrared (NIR) region, i.e., at around 640, 740, 860, 1470, and 1890 nm (molar absorptivity, epsilon = 150-900 M(-1).cm(-1)) for [U(V)O2(dbm)2DMSO]-, 650, 750, 900, 1400, and 1875 nm (epsilon = 100-300 M(-1).cm(-1)) for [U(V)O2(saloph)DMSO]-, and 760, 990, 1140, 1600, and 1800 nm (epsilon = 0.2-3.6 M(-1).cm(-1)) for [U(V)O2(CO3)3]5-. These characteristic absorption bands of the uranyl(V) complexes are attributable to the electronic transitions in the U(V)O2+ core because the spectral features are similar to each other despite the differences in the ligands coordinated to the equatorial plane of the U(V)O2+ moiety. On the other hand, the epsilon values of [U(V)O2(CO3)3]5- are quite smaller than those of [U(V)O2(dbm)2DMSO]- and [U(V)O2(saloph)DMSO]-. Such differences can be explained by the different coordination geometries around the center uranium in these uranyl(V) complexes. Consequently, the absorption bands of the uranyl(V) complexes in visible-NIR region were assigned to f-f transitions in the 5f1 configuration.  相似文献   

13.
We report on a study of the photodissociation spectroscopy of weakly bound Zn+(H2O) and Zn+(D2O) complexes. The work is supported by ab initio electronic structure calculations of the ground and low-lying excited energy surfaces. We assign two molecular absorption bands in the near UV correlating to Zn+ (4s-4p)-based transitions, and identify vibrational progressions associated with both intermolecular and intramolecular vibrational modes of the cluster. Partially resolved rotational structure is consistent with a C(2V) equilibrium complex geometry. Experimental spectroscopic constants are in very good agreement with ab initio theoretical predictions. Results are compared with previous work on main group and transition metal ion-H2O clusters.  相似文献   

14.
M(+)(acetone) ion-molecule complexes (M = Mg, Al, Ca) are produced in a pulsed molecular beam by laser vaporization and studied with infrared photodissociation spectroscopy in the carbonyl stretch region. All of the spectra exhibit carbonyl stretches that are shifted significantly to lower frequencies than the free-molecule value, consistent with metal cation binding on the oxygen of the carbonyl. Density functional theory is employed to elucidate the shifts and patterns in these spectra. Doublet features are measured for the carbonyl region of Mg(+) and Ca(+) complexes, and these are assigned to Fermi resonances between the symmetric carbonyl stretch and the overtone of the symmetric carbon stretch. The carbonyl stretch red shift is greater for Al(+) than it is for the Mg(+) and Ca(+) complexes. This is attributed to the smaller size of the closed-shell Al(+), which enhances its ability to polarize the carbonyl electrons. Density functional theory correctly predicts the direction of the carbonyl stretch shift and the relative trend for the three metals.  相似文献   

15.
The coordination chemistry of amine tris(phenolate) ligands around V(III) and V(V) is described for the first time. Three amine tris(phenolate) ligands were employed featuring different steric and electronic influence exerted by the phenolate substituents in the ortho and para positions being either t-Bu, Me, or Cl. V(III) complexes of all ligands (1-3) were readily obtained by reaction between the ligand precursors and VCl3(THF)3 in the presence of triethylamine. The complexes obtained were pentacoordinate, a THF ligand completing the coordination sphere of the metal, which was found to be of almost perfect TBP geometry, as revealed by crystallography. V(V) oxo complexes of all the ligands (4-6) were readily obtained by a reaction between the ligand precursors and VO(OPr)3. The oxo complexes of the alkyl-bearing ligands (4 and 5) could also be synthesized by the air oxidation of the corresponding V(III) complexes (1 and 2); however, the attempted air oxidation of the V(III) complex bound to the electron-poor ligand (3) did not yield the corresponding oxo complex 6. 1H NMR and crystallographic analysis of complexes 4 and 5 supported their TBP structures. Complex 6, on the other hand, was found to be composed of a TBP complex (6a) and an octahedral complex (6b) in equilibrium, the octahedral complex being more stable at lower temperatures. An X-ray structure of 6b revealed a mononuclear oxo complex, the sixth coordination site being occupied by an aqua ligand to which two THF molecules are H-bonded. Complexes 4-6 catalyze the epoxidation of olefins by t-BuOOH, albeit slowly. These complexes may thus be considered as structural and functional models of vanadium-dependent haloperoxidase enzymes.  相似文献   

16.
Singly and doubly charged scandium-water ion-molecule complexes are produced in a supersonic molecular beam by laser vaporization. These ions are mass analyzed and size selected in a specially designed reflectron time-of-flight spectrometer. To probe their structure, vibrational spectroscopy is measured for these complexes in the O-H stretching region using infrared laser photodissociation and the method of rare gas atom predissociation, also known as "tagging." The O-H stretches in these systems are shifted to lower frequency than those for the free water molecule, and the intensity of the symmetric stretch band is strongly enhanced relative to the asymmetric stretch. These effects are more prominent for the doubly charged ions. Partially resolved rotational structure for the Sc(+)(H(2)O)Ar complex shows that the H-O-H bond angle is larger than it is in the free water molecule. Fragmentation and spectral patterns indicate that the coordination of the Sc(2+) ion is filled with six ligands (one water and five argons).  相似文献   

17.
Nickel cation-acetylene complexes of the form Ni(+)(C(2)H(2))(n), Ni(+)(C(2)H(2))Ne, and Ni(+)(C(2)H(2))(n)Ar(m) (n = 1-4) are produced in a molecular beam by pulsed laser vaporization. These ions are size-selected and studied in a time-of-flight mass spectrometer by infrared laser photodissociation spectroscopy in the C-H stretch region. The fragmentation patterns indicate that the coordination number is 4 for this system. The n = 1-4 complexes with and without rare gas atoms are also investigated with density functional theory. The combined IR spectra and theory show that pi-complexes are formed for the n = 1-4 species, causing the C-H stretches in the acetylene ligands to shift to lower frequencies. Theory reveals that there are low-lying excited states nearly degenerate with the ground state for all the Ni(+)(C(2)H(2))(n) complexes. Although isomeric structures are identified for rare gas atom binding at different sites, the attachment of rare gas atoms results in only minor perturbations on the structures and spectra for all complexes. Experiment and theory agree that multiple acetylene binding takes place to form low-symmetry structures, presumably due to Jahn-Teller distortion and/or ligand steric effects. The fully coordinated Ni(+)(C(2)H(2))(4) complex has a near-tetrahedral structure.  相似文献   

18.
Summary A new series of biologically active oxovanadium(V) complexes of benzothiazolines derived from heterocyclic ketones and 2-mercaptoaniline were synthesized and characterized by elemental analyses, molecular weight determinations and conductance measurements. Spectroscopic studies indicate coordination of sulphur and the azomethine nitrogen to the metal. All the free ligands and their complexes have been tested in vitro against a variety of pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties.  相似文献   

19.
The formation of Pt(eta(5)-C(5)Me(5))(CO){C(O)NR(2)} (R=Me, Et) complexes was established by spectroscopic analysis. The infrared spectra of these complexes showed a sharp absorption due to the presence of coordinated carbonyl group in the region 2017-2013cm(-1). The N,N-dialkylcarbamoyl ligands showed a characteristic CO stretching absorption in the range 1609-1616cm(-1). The proton NMR spectra of these complexes revealed the expected singlet arising from five equivalent methyl groups on the cyclopentadienyl ring with satellites due to coupling to (195)Pt. The N-methyl and N-ethyl protons exhibited very broad resonances due to restricted rotation about the N-C bond at room temperature. On cooling to -30 degrees C, the N,N-dimethyl protons for complex Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} showed two sharp singlets at delta 2.86 and 3.09ppm as expected for the static structure. For the N,N-diethyl derivative, Pt(eta(5)-C(5)Me(5))(CO){C(O)NEt(2)}, the methyl protons exhibited only a single triplet at delta 1.06ppm at -10 degrees C due to coupling with the methylene protons. This single resonance arises through accidental overlap as the methylene protons of the ethyl groups are inequivalent at this temperature and each exhibited a quartet at delta 3.33 and 3.70ppm due to coupling with the methyl protons. The singlet resonances for the methyl and ring carbons of the eta(5)-C(5)Me(5) group found in (13)C{(1)H} NMR spectra are illustrative of the chemical equivalence of all the carbon atoms caused by free rotation of the ring in these complexes. The signals attributable to the carbonyl and carbamoyl carbon atom resonances are found downfield as two singlets each with a large coupling constant to platinum. The platinum coupling constants of the downfield resonances could not be identified for Pt(eta(5)-C(5)Me(5))(CO){C(O)NMe(2)} due to presence of impurities.  相似文献   

20.
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号