首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Two experiments investigated the role of the regularity of the frequency spacing of harmonics, as a separate factor from harmonicity, on the perception of the virtual pitch of a harmonic series. The first experiment compared the shifts produced by mistuning the 3rd, 4th, and 5th harmonics in the pitch of two harmonic series: the odd-H and the all-H tones. The odd-H tone contained odd harmonics 1 to 11, plus the 4th harmonic; the all-H tone contained harmonics 1 to 12. Both tones had a fundamental frequency of 155 Hz. Pitch shifts produced by mistuning the 3rd harmonic, but not the 4th and 5th harmonics, were found to be significantly larger for the odd-H tone than for the all-H tone. This finding was consistent with the idea that grouping by spectral regularity affects pitch perception since an odd harmonic made a larger contribution than an adjacent even harmonic to the pitch of the odd-H tone. However, an alternative explanation was that the 3rd mistuned harmonic produced larger pitch shifts within the odd-H tone than the 4th mistuned harmonic because of differences in the partial masking of these harmonics by adjacent harmonics. The second experiment tested these explanations by measuring pitch shifts for a modified all-H tone in which each mistuned odd harmonic was tested in the presence of the 4th harmonic, but in the absence of its other even-numbered neighbor. The results showed that, for all mistuned harmonics, pitch shifts for the modified all-H tone were not significantly different from those for the odd-H tone. These findings suggest that the harmonic relations among frequency components, rather than the regularity of their frequency spacing, is the primary factor for the perception of the virtual pitch of complex sounds.  相似文献   

2.
The perception of pitch for pure tones with frequencies falling inside low- or high-frequency dead regions (DRs) was examined. Subjects adjusted a variable-frequency tone to match the pitch of a fixed tone. Matches within one ear were often erratic for tones falling in a DR, indicating unclear pitch percepts. Matches across ears of subjects with asymmetric hearing loss, and octave matches within ears, indicated that tones falling within a DR were perceived with an unclear pitch and/or a pitch different from "normal" whenever the tones fell more than 0.5 octave within a low- or high-frequency DR. One unilaterally impaired subject, with only a small surviving region between 3 and 4 kHz, matched a fixed 0.5-kHz tone in his impaired ear with, on average, a 3.75-kHz tone in his better ear. When asked to match the 0.5-kHz tone with an amplitude-modulated tone, he adjusted the carrier and modulation frequencies to about 3.8 and 0.5 kHz, respectively, suggesting that some temporal information was still available. Overall, the results indicate that the pitch of low-frequency tones is not conveyed solely by a temporal code. Possibly, there needs to be a correspondence between place and temporal information for a normal pitch to be perceived.  相似文献   

3.
This study explored the relationship between music and speech by examining absolute pitch and lexical tone perception. Taiwanese-speaking musicians were asked to identify musical tones without a reference pitch and multispeaker Taiwanese level tones without acoustic cues typically present for speaker normalization. The results showed that a high percentage of the participants (65% with an exact match required and 81% with one-semitone errors allowed) possessed absolute pitch, as measured by the musical tone identification task. A negative correlation was found between occurrence of absolute pitch and age of onset of musical training, suggesting that the acquisition of absolute pitch resembles the acquisition of speech. The participants were able to identify multispeaker Taiwanese level tones with above-chance accuracy, even though the acoustic cues typically present for speaker normalization were not available in the stimuli. No correlations were found between the performance in musical tone identification and the performance in Taiwanese tone identification. Potential reasons for the lack of association between the two tasks are discussed.  相似文献   

4.
In five experiments, we investigated the speed of pitch resolution in a musical context. In experiments 1-3, listeners were presented an incomplete scale (doh, re, mi, fa, sol, la, ti) and then a probe tone. Listeners were instructed to make a rapid key-press response to probe tones that were relatively proximal in pitch to the last note of the scale (valid trials), and to ignore other probe tones (invalid trials). Reaction times were slower if the pitch of the probe tone was dissonant with the expected pitch (i.e., the completion of the scale, or doh) or if the probe tone was nondiatonic to the key implied by the scale. In experiments 4 and 5, listeners were presented a two-octave incomplete arpeggio, and then a probe tone. In this case, listeners were asked to make a rapid key-press response to probe tones that were relatively distant in pitch from the last note of the arpeggio. Under these conditions, registral direction and pitch proximity were the dominant influences on reaction time. Results are discussed in view of research on auditory attention and models of musical pitch.  相似文献   

5.
This paper describes an algorithm for producing pitch circularity using tones that each comprise a full harmonic series, and reports an experiment that demonstrates such circularity. Banks of 12 tones (i.e., scales) were created, with F0 varying in semitone steps. For each scale, as F0 descended, the amplitudes of the odd-numbered harmonics were reduced relative to the even-numbered ones by 3.5 dB for each semitone step. In consequence, the tone with the lowest F0 was heard as though displaced up an octave. In an experiment employing two such scales, all possible ordered tone pairs from each scale were presented, making 132 ordered tone pairs for each scale. Sixteen subjects judged for each tone pair whether the second tone was higher or lower than the first. The data derived from these pairwise comparisons were subjected to Kruskal's nonmetric multidimensional scaling, and excellent circularities were obtained. Individual differences in the subjects' judgments were also explored. The findings support the argument that musical pitch should be characterized as varying along two dimensions: the monotonic dimension of pitch height and the circular dimension of pitch class.  相似文献   

6.
从调类个性、句中位置和重音级别3个层面的语音分析,考察普通话4个声调在不同语调条件下的音高实现。目标词被置于3种不同的焦点位置(即句重音最强的位置)和两种不同的非焦点位置(即非句重音位置)上,对目标词的调域以及目标声调的高音点和低音点进行了观察分析。实验结果表明,(1)在焦点条件以及非焦点条件下,阳平的音高位于调域的中低音区,去声低音点的理论调值尽管低于阳平低音点,但去声低音点在音高实现上往往接近阳平低音点甚至会高于阳平低音点;(2)焦点在句首位置表现为调域向上下两个方向扩展,在句末位置则表现为调域整体上抬,但不同声调的高音点并不都与调域上限同比例变化,不同声调低音点的变化也并不都与调域下限同比例变化;(3)重音后音节的音高对焦点音节的依赖关系受音步组合关系的制约,焦点和焦点后音节若在同一音步内,焦点后音节的音高与焦点音节的音高关系类似轻声音节与其前接非轻声音节的音高关系,焦点和焦点后音节之间如果存在音步边界,焦点后音节的音高表现出一定的独立性。这些结果说明了语句中声调音高实现的复杂性,一个具有较好预测性的汉语普通话语调模型的建立需要包括焦点结构、韵律结构、协同发音、调类个性等不同层面信息的诸多细节化规则。  相似文献   

7.
The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present.  相似文献   

8.
音高和时长在普通话轻声知觉中的作用   总被引:4,自引:2,他引:2  
王韫佳 《声学学报》2004,29(5):453-461
目的在于探讨音高和时长两种因素在普通话轻声知觉中的作用方式以及比较两种因素所起作用的大小。使用了心理-声学的实验方法,所用刺激为音高和时长得到控制的15组合成的双音节语音词,要求33名普通话母语者对所有刺激的重音类型进行“重重”或“重轻”的强迫性选择判断。结果表明: (1)音高和时长对于普通话轻声的知觉均有显著作用, (2)音高对于轻声知觉的作用明显大于时长, (3)音高曲线的起点、高音点和调型曲拱均对轻声的知觉起作用。这些实验结果与自然语音中轻声的声学特征基本上是互相对应的,但也存在一定程度的差别。这些差别说明,自然语音中轻声的某些声学特征只是羡余特征而非音系特征。  相似文献   

9.
Three experiments investigated how the onset asynchrony and ear of presentation of a single mistuned frequency component influence its contribution to the pitch of an otherwise harmonic complex tone. Subjects matched the pitch of the target complex by adjusting the pitch of a second similar but strictly periodic complex tone. When the mistuned component (the 4th harmonic of a 155 Hz fundamental) started 160 ms or more before the remaining harmonics but stopped simultaneously with them, it made a reduced contribution to the pitch of the complex. It made no contribution if it started more than 300 ms before. Pitch shifts and their reduction with onset time were larger for short (90 ms) sounds than for long (410 ms). Pitch shifts were slightly larger when the mistuned component was presented to the same ear as the remaining 11 in-tune harmonics than to the opposite ear. Adding a "captor" complex tone with a fundamental of 200 Hz and a missing 3rd harmonic to the contralateral ear did not augment the effect of onset time, even though the captor was synchronous with the mistuned harmonic, the mistuned component was equal in frequency to the missing 3rd harmonic of the captor complex tone and it was played to the same ear as the captor. The results show that a difference in onset time can prevent a resolved frequency component from contributing to the pitch of a complex tone even though it is present throughout that complex tone.  相似文献   

10.
Absolute pitch, the rare ability to identify or produce a musical tone without a reference tone, has been shown to be advantageous in some musical tasks; however, its relevance in musical contexts primarily involving relative pitch has been questioned. To explore this issue, 36 trained musicians-18 absolute pitch possessors and 18 non-possessors with equivalent age of onset and duration of musical training-were tested on interval naming tasks requiring only relative pitch. The intervals to be named were either ascending or descending with separation ranging from 1 to 12 semitones and equally involved all 12 pitch classes. Three different conditions were employed; these used brief sine waves, piano tones, and piano tones preceded by a V7-I chord cadence so as to establish a tonal context. The possession of absolute pitch was strongly correlated with enhanced performance on all these tests of relative pitch. Furthermore, no evidence was found that this absolute pitch avantage depended on key, interval size, or musical context.  相似文献   

11.
The relation between the auditory brain stem potential called the frequency-following response (FFR) and the low pitch of complex tones was investigated. Eleven complex stimuli were synthesized such that frequency content varied but waveform envelope periodicity was constant. This was accomplished by repeatedly shifting the components of a harmonic complex tone upward in frequency by delta f of 20 Hz, producing a series of six-component inharmonic complex tones with constant intercomponent spacing of 200 Hz. Pitch-shift functions were derived from pitch matches for these stimuli to a comparison pure tone for each of four normal hearing adults with extensive musical training. The FFRs were recorded for the complex stimuli that were judged most divergent in pitch by each subject and for pure-tone signals that were judged equal in pitch to these complex stimuli. Spectral analyses suggested that the spectral content of the FFRs elicited by the complex stimuli did not vary consistently with component frequency or the first effect of pitch shift. Furthermore, complex and pure-tone signals judged equal in pitch did not elicit FFRs of similar spectral content.  相似文献   

12.
This study evaluated the reliability of pitch judgments as a basic step toward increasing interrater and intrarater reliability of multidimensional perceptual judgments of the speaking voice. Forty-five undergraduate university students studying speech/language pathology made piano-to-piano tone pitch matches and vowel-to-piano pitch matches using a computer software program. The mean percentage correct of piano-to-piano tone matches was 91.3% and of vowel-to-piano matches was 75.6%. Subjects who scored 100% correct were significantly faster at the pitch matching task. Further research of perceptual judgments of pitch and its contribution to multidimensional rating tasks is warranted.  相似文献   

13.
Listeners without absolute (or "perfect") pitch have difficulty identifying or producing isolated musical pitches from memory. Instead, they process the relative pattern of pitches, which remains invariant across pitch transposition. Musically untrained non-absolute pitch possessors demonstrated absolute pitch memory for the telephone dial tone, a stimulus that is always heard at the same absolute frequency. Listeners accurately classified pitch-shifted versions of the dial tone as "normal," "higher than normal" or "lower than normal." However, the role of relative pitch processing was also evident, in that listeners' pitch judgments were also sensitive to the frequency range of stimuli.  相似文献   

14.
汉语语调降阶的实验研究   总被引:3,自引:2,他引:1  
采用设计特定声调组合的实验室语句的方法,研究了汉语普通话语调降阶的规律。结果发现,在普通话语调中,同样存在自动降阶和非自动降阶两种音高现象。在有低音介入的非自动降阶中,低音对后音节音域的影响表现在使音域上限降低,音域的下限保持不变;因此汉语中的降阶是语调高音特征的表现;低音特征声调会使低音后的高音发生正向降低和低音前高音的逆向提高,并且这两种作用是可以相互包容的。在自动降阶中,高音线的下降趋势是线性的,它受重音位置及重读程度的影响,在发音人中有较大差异。与已有的其他语言降阶研究的结果相比,汉语的降阶率不是固定的,且降阶的作用范围并不只局限于同低音相邻的音节。  相似文献   

15.
Psychophysical experiments show that the pitch of a short sine wave tone depends upon the amplitude envelope of the tone. Subjects find that the pitch of an exponentially decaying tone (1dB/ms) is higher than the pitch of a (20-ms) rectangularly gated tone of equal frequency. The percentage difference in frequency required to produce equal pitches with the two envelopes depends upon frequency fo: 2.6% at fo = 412 Hz, 1.4% at fo = 825 Hz, 1% at fo = 1650 Hz, and 0.7% at fo = 3300 Hz. The pitch change is insensitive to the relative intensities of the two tones. The spectra of tones with the two different envelopes suggest no obvious explanation for the pitch change. However, the weighted time-varying spectra for tones with two different envelopes evolve differently with time. Alternatively the pitch change can be derived from a modified version of the auditory phase theory of Huggins.  相似文献   

16.
Learning to perceive pitch differences   总被引:2,自引:0,他引:2  
This paper reports two experiments concerning the stimulus specificity of pitch discrimination learning. In experiment 1, listeners were initially trained, during ten sessions (about 11,000 trials), to discriminate a monaural pure tone of 3000 Hz from ipsilateral pure tones with slightly different frequencies. The resulting perceptual learning (improvement in discrimination thresholds) appeared to be frequency-specific since, in subsequent sessions, new learning was observed when the 3000-Hz standard tone was replaced by a standard tone of 1200 Hz, or 6500 Hz. By contrast, a subsequent presentation of the initial tones to the contralateral ear showed that the initial learning was not, or was only weakly, ear-specific. In experiment 2, training in pitch discrimination was initially provided using complex tones that consisted of harmonics 3-7 of a missing fundamental (near 100 Hz for some listeners, 500 Hz for others). Subsequently, the standard complex was replaced by a standard pure tone with a frequency which could be either equal to the standard complex's missing fundamental or remote from it. In the former case, the two standard stimuli were matched in pitch. However, this perceptual relationship did not appear to favor the transfer of learning. Therefore, the results indicated that pitch discrimination learning is, at least to some extent, timbre-specific, and cannot be viewed as a reduction of an internal noise which would affect directly the output of a neural device extracting pitch from both pure tones and complex tones including low-rank harmonics.  相似文献   

17.
This experiment examined the generation of virtual pitch for harmonically related tones that do not overlap in time. The interval between successive tones was systematically varied in order to gauge the integration period for virtual pitch. A pitch discrimination task was employed, and both harmonic and nonharmonic tone series were tested. The results confirmed that a virtual pitch can be generated by a series of brief, harmonically related tones that are separated in time. Robust virtual pitch information can be derived for intervals between successive 40-ms tones of up to about 45 ms, consistent with a minimum estimate of integration period of about 210 ms. Beyond intertone intervals of 45 ms, performance becomes more variable and approaches an upper limit where discrimination of tone sequences can be undertaken on the basis of the individual frequency components. The individual differences observed in this experiment suggest that the ability to derive a salient virtual pitch varies across listeners.  相似文献   

18.
The integration of nonsimultaneous frequency components into a single virtual pitch was investigated by using a pitch matching task in which a mistuned 4th harmonic (mistuned component) produced pitch shifts in a harmonic series (12 equal-amplitude harmonics of a 155-Hz F0). In experiment 1, the mistuned component could either be simultaneous, stop as the target started (pre-target component), or start as the target stopped (post-target component). Pitch shifts produced by the pre-target components were significantly smaller than those obtained with simultaneous components; in the post-target condition, the size of pitch shifts did not decrease relative to the simultaneous condition. In experiment 2, a silent gap of 20, 40, 80, or 160 ms was introduced between the nonsimultaneous components and the target sound. In the pre-target condition, pitch shifts were reduced to zero for silent gaps of 80 ms or longer; by contrast, a gap of 160 ms was required to eliminate pitch shifts in the post-target condition. The third experiment tested the hypothesis that, when post-target components were presented, the processing of the pitch of the target tone started at the onset of the target, and ended at the gap duration at which pitch shifts decreased to zero. This hypothesis was confirmed by the finding that pitch shifts could not be observed when the target tone had a duration of 410 ms. Taken together, the results of these experiments show that nonsimultaneous components that occur after the onset of the target sound make a larger contribution to the virtual pitch of the target, and over a longer period, than components that precede the onset of the target sound.  相似文献   

19.
Training American listeners to perceive Mandarin tones has been shown to be effective, with trainees' identification improving by 21%. Improvement also generalized to new stimuli and new talkers, and was retained when tested six months after training [Y. Wang et al., J. Acoust. Soc. Am. 106, 3649-3658 (1999)]. The present study investigates whether the tone contrasts gained perceptually transferred to production. Before their perception pretest and after their post-test, the trainees were recorded producing a list of Mandarin words. Their productions were first judged by native Mandarin listeners in an identification task. Identification of trainees' post-test tone productions improved by 18% relative to their pretest productions, indicating significant tone production improvement after perceptual training. Acoustic analyses of the pre- and post-training productions further reveal the nature of the improvement, showing that post-training tone contours approximate native norms to a greater degree than pretraining tone contours. Furthermore, pitch height and pitch contour are not mastered in parallel, with the former being more resistant to improvement than the latter. These results are discussed in terms of the relationship between non-native tone perception and production as well as learning at the suprasegmental level.  相似文献   

20.
Complex tone bursts were bandpass filtered, 22nd-30th harmonic, to produce waveforms with five regularly occurring envelope peaks ("pitch pulses") that evoked pitches associated with their repetition period. Two such tone bursts were presented sequentially and separated by an interpulse interval (IPI). When the IPI was varied, the pitch of the whole sequence was shifted by between +2% and -5%. When the IPI was greater than one period, little effect was seen. This is consistent with a pitch mechanism employing a long integration time for continuous stimuli that resets in response to temporal discontinuities of greater than about one period of the waveform. Similar pitch shifts were observed for fundamental frequencies from 100 to 250 Hz. The pitch shifts depended on the IPI duration relative to the period of the complex, not on the absolute IPI duration. The pitch shifts are inconsistent with the autocorrelation model of Meddis and O'Mard [J. Acoust. Soc. Am. 102, 1811-1820 (1997)], although a modified version of the weighted mean-interval model of Carlyon et al. [J. Acoust. Soc. Am. 112, 621-633 (2002)] was successful. The pitch shifts suggest that, when two pulses occur close together, one of the pulses is ignored on a probabilistic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号