首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Reaction: see text].A model for glycol radicals was employed in laser flash photolysis kinetic studies of catalysis of the fragmentation of a methoxy group adjacent to an alpha-hydroxy radical center. Photolysis of a phenylselenylmethylcyclopropane precursor gave a cyclopropylcarbinyl radical that rapidly ring opened to the target alpha-hydroxy-beta-methoxy radical (3). Heterolysis of the methoxy group in 3 gave an enolyl radical (4a) or an enol ether radical cation (4b), depending upon pH. Radicals 4 contain a 2,2-diphenylcyclopropane reporter group, and they rapidly opened to give UV-observable diphenylalkyl radicals as the final products. No heterolysis was observed for radical 3 under neutral conditions. In basic aqueous acetonitrile solutions, specific base catalysis of the heterolysis was observed; the pK(a) of radical 3 was determined to be 12.5 from kinetic titration plots, and the ketyl radical formed by deprotonation of 3 eliminated methoxide with a rate constant of 5 x 10(7) s(-1). In the presence of carboxylic acids in acetonitrile solutions, radical 3 eliminated methanol in a general acid-catalyzed reaction, and rate constants for protonation of the methoxy group in 3 by several acids were measured. Radical 3 also reacted by fragmentation of methoxide in Lewis-acid-catalyzed heterolysis reactions; ZnBr2, Sc(OTf)3, and BF3 were found to be efficient catalysts. Catalytic rate constants for the heterolysis reactions were in the range of 3 x 10(4) to 2 x 10(6) s(-1). The Lewis-acid-catalyzed heterolysis reactions are fast enough for kinetic competence in coenzyme B12 dependent enzyme-catalyzed reactions of glycols, and Lewis-acid-catalyzed cleavages of beta-ethers in radicals might be applied in synthetic reactions.  相似文献   

2.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

3.
Rate constants for heterolytic fragmentation of beta-(ester)alkyl radicals were determined by a combination of direct laser flash photolysis studies and indirect kinetic studies. The 1,1-dimethyl-2-mesyloxyhexyl radical (4a) fragments in acetonitrile at ambient temperature with a rate constant of k(het) > 5 x 10(9) s(-1) to give the radical cation from 2-methyl-2-heptene (6), which reacts with acetonitrile with a pseudo-first-order rate constant of k = 1 x 10(6) s(-1) and is trapped by methanol in acetonitrile in a reversible reaction. The 1,1-dimethyl-2-(diphenylphosphatoxy)hexyl radical (4b) heterolyzes in acetonitrile to give radical cation 6 in an ion pair with a rate constant of k(het) = 4 x 10(6) s(-1), and the ion pair collapses with a rate constant of k < or = 1 x 10(9) s(-1). Rate constants for heterolysis of the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(diphenylphosphatoxy)ethyl radical (5a) and the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(trifluoroacetoxy)ethyl radical (5b) were measured in various solvents, and an Arrhenius function for reaction of 5a in THF was determined (log k = 11.16-5.39/2.3RT in kcal/mol). The cyclopropyl reporter group imparts a 35-fold acceleration in the rate of heterolysis of 5a in comparison to 4b. The combined results were used to generate a predictive scale for heterolysis reactions of alkyl radicals containing beta-mesyloxy, beta-diphenylphosphatoxy, and beta-trifluoroacetoxy groups as a function of solvent polarity as determined on the E(T)(30) solvent polarity scale.  相似文献   

4.
The 2,2-diphenylcyclopropyl group was employed to accelerate reactions of alpha-methoxy radicals containing beta-leaving groups, to trap the products of either migration or heterolysis of the leaving group, and to provide a useful chromophore for laser flash photolysis kinetic studies. The reporting group biases reactions in favor of heterolytic fragmentation and most likely intercepts radical cations in ion pairs. The 1-methoxy-1-methyl-2-(diethylphosphatoxy)-2-(2,2-diphenylcyclopropyl)ethyl radical (3a) reacted faster than the kinetic resolution of the instrument (k > 2 x 10(8) s(-1)) in all solvents studied, and the 2-acetoxy analogue (3b) reacted much faster than related radicals that do not contain the cyclopropyl group (e.g., k = 1.1 x 10(6) s(-1) in CH3CN at ambient temperature). The rate constants and Arrhenius parameters for reactions of 3b indicated that the rate-limiting step in the reaction was heterolytic cleavage. The 1,2-dimethoxy-1-methyl-2-(2,2-diphenylcyclopropyl)ethyl radical (26) reacted in a general acid-catalyzed heterolysis reaction, and rate constants for protonation of the beta-methoxy group by a series of carboxylic acids were determined. The results suggest that acid-catalyzed reactions of beta-alkoxy radicals might be employed in synthetic conversions.  相似文献   

5.
Data on the special salt effect in monomolecular heterolysis reactions (Sn1, E1, solvolysis) are summarized and critically analyzed. The mechanisms suggested by Ingold, Winstein, Dannenberg, Okamoto, and the authors are discussed. The special salt effect is due to the effect of a salt on the contact ion pair of a substrate. Quadrupoles and ion triplets are formed. In the limiting step of the heterolysis, a contact ion pair interacts with a solvent cavity. Association of salts with a contact ion pair increases the lifetime of the cationoid and the probability of its contact with the solvent cavity. A spatially separated ion pair is formed, which rapidly transforms into a solvation-separated ion pair, which, also rapidly, yields reaction products.  相似文献   

6.
Reactions of unimolecular heterolysis occur through consecutive formation of four ion pairs: contact, spatially separated, separated by one solvent molecule, and solvent-separated. In the limiting stage, the contact ion pair interacts with the solvent cavity. Nucleophilic solvation hinders the separation of ions in the transition state. At the heterolysis of secondary substrates this is compensated by the nucleophilic solvation of the incipient carbocations from the rear and the reaction rate does not depend on the solvent nucleophilicity. In the case of heterolysis of tertiary substrates, only partial compensation occurs, and nucleophilic solvent reduces the reaction rate through reducing the activation entropy.  相似文献   

7.
The characteristics of dynamic equilibrium states in the experimentally studied reversible chain reactions of quinoneimines with hydroquinones and in some reversible chain reactions with similar mechanisms are discussed. The concentrations of radicals and non-radical participants were calculated. The equilibrium concentrations of the same reaction participants depend only on the initial reactant concentrations, being independent of the number of chain initiation-chain termination steps in the reaction mechanism. The results of mathematical modeling of reversible chain reactions using the experimentally determined rate constants for elementary steps of a reaction in the quinoneimine-hydroquinone system are presented. Expressions relating the equilibrium constants of elementary steps to each other and to the equilibrium constant of the total stoichiometric reaction are derived. Examples of other actual reversible chain reactions are presented, indicating that such reactions are widespread.  相似文献   

8.
Many processes in biology and chemistry involve multistep reactions or transitions. The kinetic data associated with these reactions are manifested by superpositions of exponential decays that are often difficult to dissect. Two major challenges have hampered the kinetic analysis of multistep chemical reactions: (1) reliable and unbiased determination of the number of reaction steps, and (2) stable reconstruction of the distribution of kinetic rate constants. Here, we introduce two numerically stable integral transformations to solve these two challenges. The first transformation enables us to deduce the number of rate-limiting steps from kinetic measurements, even when each step has arbitrarily distributed rate constants. The second transformation allows us to reconstruct the distribution of rate constants in the multistep reaction using the phase function approach, without fitting the data. We demonstrate the stability of the two integral transformations by both analytic proofs and numerical tests. These new methods will help provide robust and unbiased kinetic analysis for many complex chemical and biochemical reactions.  相似文献   

9.
本文建立了可逆反应在绝热系统中的热动力学研究法, 并用自制的绝热式自动热量计, 研究了三个可逆反应体系的热动力学, 验证了本文方法的正确性。  相似文献   

10.
In solutions of trifluorotoluene or toluene containing 2,2,2-trifluoroethanol, the beta-phosphate radical heterolyzed to give a detectable ion pair, identified as a solvent-separated species. Rate constants for the radical fragmentation reaction forming the ion pair, for ion pair collapse, and for diffusive escape to free ions were measured. The kinetics and entropy of activation for fragmentation indicate that the rearrangement reaction occurs by a heterolysis pathway in all solvents. [reaction: see text]  相似文献   

11.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

12.
We report a systematic study of the stoichiometric reactions of isolated arylpalladium hydroxo and halide complexes with arylboronic acids and aryltrihydroxyborates to evaluate the relative rates of the two reaction pathways commonly proposed to account for transmetalation in the Suzuki-Miyaura reaction. On the basis of the relative populations of the palladium and organoboron species generated under conditions common for the catalytic process and the observed rate constants for the stoichiometric reactions between the two classes of reaction components, we conclude that the reaction of a palladium hydroxo complex with boronic acid, not the reaction of a palladium halide complex with trihydroxyborate, accounts for transmetalation in catalytic Suzuki-Miyaura reactions conducted with weak base and aqueous solvent mixtures.  相似文献   

13.
The microcanonical rate constants for the hydrogen-transfer process of HCCF (reaction 7) and the fluoro-transfer process of FCCF (reaction 8) are carried out with tunneling correction and curvature correction. The results show that the tunneling effects and curvature effects on the rate constant of reaction 7 is quite different from that of reaction 8. The rate constants for different rotational states are also studied for these reactions.  相似文献   

14.
[reaction: see text] alpha-Methoxy-beta-mesyloxy radicals were produced in laser flash photolysis reactions, and yields of enol ether radical cations formed by heterolytic fragmentation of the mesylate group were determined. The mesylate heterolysis reaction is faster than heterolyses of phosphate and bromide groups in analogous radicals and highly efficient in medium-polarity solvents.  相似文献   

15.
Dynamics of an endothermic proton-transfer reaction, F(-) with dimethyl sulfoxide, and an endothermic proton-transfer reaction with a competing exothermic substitution (S(N)2) channel, F(-) with borane-methyl sulfide complex, were investigated using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) and kinetic modeling. The two proton-transfer reactions have slightly positive and a small negative overall free energy changes, respectively. Energy-dependent rate constants were measured as a function of F(-) ion translational energy, and the resulting kinetics were modeled with the RRKM (Rice-Ramsperger-Kassel-Marcus) theory. The observed rate constants for the proton-transfer reactions of F(-) with dimethyl sulfoxide and with borane-methyl sulfide complex are identical, with a value of 0.17 x 10(-9) cm(3) molecule(-1) s(-1); for the S(N)2 reaction, k = 0.90 x 10(-9) cm(3) molecule(-1) s(-1) at 350 K. Both proton-transfer reactions have positive entropy changes in the forward direction and show positive energy dependences. The competing S(N)2 reaction exhibits negative energy dependence and becomes less important at higher energies. The changes of the observed rate constants agree with RRKM theory predictions for a few kcal/mol of additional kinetic energy. The dynamic change of the branching ratio for the competing proton transfer and the substitution reactions results from the competition between the microscopic rate constants associated with each channel.  相似文献   

16.
The reaction between tertiary butyl chloride and water clusters was examined by applying density functional theory calculations. The carbonium ion t-Bu(+) that is normally sandwiched between the water clusters was found to be absent, such that a Cbond;O covalent bond was formed in the intermediate (Int1) after heterolysis. An (H(2)O)(4) cluster is able to bridge the front and rear of the central carbon and promotes heterolysis. A correlation between bond interchanges at the central carbon and proton relays is presented. Stereochemical scrambling in the solvolysis products is discussed in terms of this correlation. In addition, an E1 pathway for the elimination product, iso-butene, is found from Int1.  相似文献   

17.
本文建立了二级发应在绝热系统中的热动力学研究, 并用自制的绝热式自动量热计, 研究了几个放热反应体系的热动力学, 而且对吸热反应体系的热动力学研究进行了探索。  相似文献   

18.
Determining reaction mechanisms and kinetic models, which can be used for chemical reaction engineering and design, from atomistic simulation is highly challenging. In this study, we develop a novel methodology to solve this problem. Our approach has three components: (1) a procedure for precisely identifying chemical species and elementary reactions and statistically calculating the reaction rate constants; (2) a reduction method to simplify the complex reaction network into a skeletal network which can be used directly for kinetic modeling; and (3) a deterministic method for validating the derived full and skeletal kinetic models. The methodology is demonstrated by analyzing simulation data of hydrogen combustion. The full reaction network comprises 69 species and 256 reactions, which is reduced into a skeletal network of 9 species and 30 reactions. The kinetic models of both the full and skeletal networks represent the simulation data well. In addition, the essential elementary reactions and their rate constants agree favorably with those obtained experimentally. © 2019 Wiley Periodicals, Inc.  相似文献   

19.
The chemical ionization mass spectra of some substituted heterocyclic systems, viz. tetrahydro-1,3,2-oxazaphosphorin-2-oxides, reveal polar cycloreversion reactions. The zwitterion intermediate formed by the heterolysis of the C? O bond undergoes stepwise clean heterolysis further resulting in the expulsion of the potential nucleophilic and electrophilic groups. The competitive and consecutive heterolysis of the ring bonds leads to the formation of the protonated phenylimine ions. Competing with heterolysis, elimination reactions involving hydrogen transfer leading to the formation of α-phenylethyl ions are also observed. The chemical ionization mass spectrometry of the heterocyclic system shows many features of the Grob type of fragmentation mechanism.  相似文献   

20.
The curing reactions of epoxy resin with aliphatic diamines and the reaction of phenyl glycidyl ether with butylamine as a model for the curing reactions were investigated with a differential scanning calorimeter (DSC) operated isothermally. The heat of reaction of phenyl glycidyl ether with butylamine is equal to 24.5 ± 0.6 kcal/mole. The rate of reaction was followed over the whole range of conversion for both model and curing reactions. The reactions are accelerated by the hydrogen-bond donor produced in the system. The rate constants based on the third-order kinetics were determined and discussed for the model reaction and for the chemically controlled region of curing reactions. The activation energies for these rate constants are 13-14 kcal/mole. At a later stage of conversion, the curing reactions become controlled by diffusion of functional groups. The final extent of conversion is short of completion for most isothermally cured and even for postcured samples because of crosslinking. It was quantitatively indicated that the final conversion of isothermal cure corresponds to the transition of the system from a viscous liquid to a glass on the basis of the theory of glass transition temperature of crosslinked polymer systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号