首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to discriminate pitch changes (or intervals) is foundational for speech and music. In an auditory psychophysical experiment, musicians and non-musicians were tested with fixed- and roving-pitch discrimination tasks to investigate the effects of musical expertise on interval discrimination. The tasks were administered parametrically to assess performance across varying pitch distances between intervals. Both groups showed improvements in fixed-pitch interval discrimination as a function of increasing interval difference. Only musicians showed better roving-pitch interval discrimination as interval differences increased, suggesting that this task was too demanding for non-musicians. Musicians had better interval discrimination than non-musicians across most interval differences in both tasks. Interestingly, musicians exhibited improved interval discrimination starting at interval differences of 100 cents (a semitone in Western music), whereas non-musicians showed enhanced discrimination at interval differences exceeding 125 cents. Although exposure to Western music and speech may help establish a basic interval-discrimination threshold between 100 and 200 cents (intervals that occur often in Western languages and music), musical training presumably enhances auditory processing and reduces this threshold to a semitone. As musical expertise does not decrease this threshold beyond 100 cents, the semitone may represent a musical training-induced intervallic limit to acoustic processing.  相似文献   

2.
While a large portion of the variance among listeners in speech recognition is associated with the audibility of components of the speech waveform, it is not possible to predict individual differences in the accuracy of speech processing strictly from the audiogram. This has suggested that some of the variance may be associated with individual differences in spectral or temporal resolving power, or acuity. Psychoacoustic measures of spectral-temporal acuity with nonspeech stimuli have been shown, however, to correlate only weakly (or not at all) with speech processing. In a replication and extension of an earlier study [Watson et al., J. Acoust. Soc. Am. Suppl. 1 71. S73 (1982)] 93 normal-hearing college students were tested on speech perception tasks (nonsense syllables, words, and sentences in a noise background) and on six spectral-temporal discrimination tasks using simple and complex nonspeech sounds. Factor analysis showed that the abilities that explain performance on the nonspeech tasks are quite distinct from those that account for performance on the speech tasks. Performance was significantly correlated among speech tasks and among nonspeech tasks. Either, (a) auditory spectral-temporal acuity for nonspeech sounds is orthogonal to speech processing abilities, or (b) the appropriate tasks or types of nonspeech stimuli that challenge the abilities required for speech recognition have yet to be identified.  相似文献   

3.
Performance on 19 auditory discrimination and identification tasks was measured for 340 listeners with normal hearing. Test stimuli included single tones, sequences of tones, amplitude-modulated and rippled noise, temporal gaps, speech, and environmental sounds. Principal components analysis and structural equation modeling of the data support the existence of a general auditory ability and four specific auditory abilities. The specific abilities are (1) loudness and duration (overall energy) discrimination; (2) sensitivity to temporal envelope variation; (3) identification of highly familiar sounds (speech and nonspeech); and (4) discrimination of unfamiliar simple and complex spectral and temporal patterns. Examination of Scholastic Aptitude Test (SAT) scores for a large subset of the population revealed little or no association between general or specific auditory abilities and general intellectual ability. The findings provide a basis for research to further specify the nature of the auditory abilities. Of particular interest are results suggestive of a familiar sound recognition (FSR) ability, apparently specialized for sound recognition on the basis of limited or distorted information. This FSR ability is independent of normal variation in both spectral-temporal acuity and of general intellectual ability.  相似文献   

4.
In three experiments, listeners' abilities to detect changes in randomly generated tonal sequences were determined for sequences or "patterns" ranging in total duration from 62.5 ms to 2 s. Experiment 1 utilized an adaptive-tracking procedure, with n, the number of pattern components, as the dependent variable, and included a variety of spectral and temporal discrimination tasks with isochronous patterns. When the to-be-detected change was the only variation on a given dimension (e.g., the presence or location of a brief pause), patterns were discriminable when the absolute duration of the changed element, or pause, exceeded a critical value. However, when each pattern component varied on the dimension of the to-be-detected change (e.g., frequency), discriminability was strongly related to the number of tones in the pattern, and only weakly to the durations of either the target components or the total pattern. This dependence of discrimination performance on n was also demonstrated with anisochronous patterns in experiment 2. Experiment 3 revealed the same dependence of performance on the number of components per pattern as did experiments 1 and 2, but with delta f/f as the dependent variable, rather than n. The number of pattern components and the proportional duration of the target components, relative to total pattern duration, were confounded in these experiments. Additional research is therefore required to determine whether number or proportional target-tone duration is the primary determinant of pattern discriminability.  相似文献   

5.
A computational model of the dolphin auditory system was developed to describe how multiple discrimination cues may be represented and employed during echolocation discrimination tasks. The model consisted of a bank of gammatone filters followed by half-wave rectification and low pass filtering. The output of the model resembles a spectrogram; however, the model reflects temporal and spectral resolving properties of the dolphin auditory system. Model outputs were organized to represent discrimination cues related to spectral, temporal and intensity information. Two empirical experiments, a phase discrimination experiment [Johnson et al., Animal Sonar Processes and Performance (Plenum, New York, 1988)] and a cylinder wall thickness discrimination tasks [Au and Pawolski, J. Comp. Physiol. A 170, 41-47 (1992)] were then simulated. Model performance was compared to dolphin performance. Although multiple discrimination cues were potentially available to the dolphin, simulation results suggest temporal information was used in the former experiment and spectral information in the latter. This model's representation of sound provides a more accurate approximation to what the dolphin may be hearing compared to conventional spectrograms, time-amplitude, or spectral representations.  相似文献   

6.
Speech-understanding difficulties observed in elderly hearing-impaired listeners are predominantly errors in the recognition of consonants, particularly within consonants that share the same manner of articulation. Spectral shape is an important acoustic cue that serves to distinguish such consonants. The present study examined whether individual differences in speech understanding among elderly hearing-impaired listeners could be explained by individual differences in spectral-shape discrimination ability. This study included a group of 20 elderly hearing-impaired listeners, as well as a group of young normal-hearing adults for comparison purposes. All subjects were tested on speech-identification tasks, with natural and computer-synthesized speech stimuli, and on a series of spectral-shape discrimination tasks. As expected, the young normal-hearing adults performed better than the elderly listeners on many of the identification tasks and on all but two discrimination tasks. Regression analyses of the data from the elderly listeners revealed moderate predictive relationships between some of the spectral-shape discrimination thresholds and speech-identification performance. The results indicated that when all stimuli were at least minimally audible, some of the individual differences in the identification of natural and synthetic speech tokens by elderly hearing-impaired listeners were associated with corresponding differences in their spectral-shape discrimination abilities for similar sounds.  相似文献   

7.
This experiment tested how listeners discriminate between the temporal patterns defined by two sequences of tones. Two arrhythmic sequences of n tones were played successively (n = 8, 12, or 16, tone duration = 35 ms, frequency = 1000 Hz), and the listener reported whether the sequences had the same or different temporal patterns. In the first sequence, the durations of the intertone gaps were chosen at random; in the second sequence, the gaps were either (a) the same as the first sequence or (b) chosen at random. Discrimination performance increased with the variability of the gap sequences and decreased with the size of the correlation between the sequences. A discrimination model based on computation of the sample correlation between the sequences of gaps, but limited by an internal variability of approximately 15 ms, described observer performance in a variety of conditions.  相似文献   

8.
Binaural performance was measured as a function of stimulus frequency for four impaired listeners, each with bilaterally symmetric audiograms. The subjects had various degrees and configurations of audiometric losses: two had high-frequency, sensorineural losses; one had a flat sensorineural loss; and one had multiple sclerosis with normal audiometric thresholds. Just noticeable differences (jnd's) in interaural time, interaural intensity, and interaural correlation as well as detection thresholds for NoSo and NoS pi conditions were obtained for narrow-band noise stimuli at octave frequencies from 250-4000 Hz. Performance of the impaired listeners was generally poorer than that of normal-hearing listeners, although it was comparable to normal in a few instances. The patterns of binaural performance showed no apparent relation to the audiometric patterns; even the two subjects with similar degree and configuration of hearing loss have very different binaural performance, both in the level and frequency dependence of their performance. The frequency dependence of performance on individual tests is irregular enough that one cannot confidently interpolate between octaves. In addition, it appears that no subset of the measurements is adequate to characterize the performance in the rest of the measurements with the exception that, within limits, interaural correlation discrimination and NoS pi detection performance are related.  相似文献   

9.
Belgian Waterslager canaries (BWC) are bred to produce a distinctive low-pitched song with energy restricted to a lower range of frequencies than in other types of canaries. Previous studies have shown a high frequency hearing loss primarily above 2000 Hz that is related to hair cell abnormalities in BWC, but little is known about auditory perception in these birds. Here, frequency, duration, and intensity discrimination, temporal integration, gap detection, and discrimination of temporally reversed harmonic complexes in BWC were measured and compared to normal-hearing non-BWC. BWC had excellent frequency discrimination ability at 1000 Hz, but showed poor frequency discrimination compared to non-BWC at frequencies in the region of hearing loss. Duration and intensity discrimination were not adversely affected in BWC. Temporal integration was reduced in BWC, except at 2000 Hz. Gap detection and discrimination of temporally reversed stimuli were somewhat better in BWC than in non-BWC. Those tests that relied primarily on temporal processing were less affected by the cochlear damage in BWC than tests that probably relied more on audibility and spectral analysis. Thus, despite significant high frequency hearing loss and extensive damage along the basilar papilla, BWC retain relatively good hearing abilities under many conditions.  相似文献   

10.
Two experiments investigated the ability of 17 school-aged children to process purely temporal and spectro-temporal cues that signal changes in pitch. Percentage correct was measured for the discrimination of sinusoidal amplitude modulation rate (AMR) of broadband noise in experiment 1 and for the discrimination of fundamental frequency (F0) of broadband sine-phase harmonic complexes in experiment 2. The reference AMR was 100 Hz as was the reference F0. A child-friendly interface helped listeners to remain attentive to the task. Data were fitted using a maximum-likelihood technique that extracted threshold, slope, and lapse rate. All thresholds were subsequently standardized to a common d' value equal to 0.77. There were relatively large individual differences across listeners: eight had relatively adult-like thresholds in both tasks and nine had higher thresholds. However, these individual differences did not vary systematically with age, over the span of 6-16 yr. Thresholds were correlated across the two tasks and were about nine times finer for F0 discrimination than for AMR discrimination as has been previously observed in adults.  相似文献   

11.
The detection of sinusoidal amplitude modulation (SAM) provides a lower bound on the degree to which temporal information in the envelope of complex waveforms is encoded by the auditory system. The extent to which changes in the amount of modulation are discriminable provides additional information on the ability of the auditory system to utilize envelope fluctuations. Results from an experiment on the discrimination of modulation depth of broadband noise are presented. Discrimination thresholds, expressed as differences in modulation power, increase monotonically with the modulation depth of the standard, but do not obey Weber's law. The effects of carrier level and of modulation frequency are consistent with those observed in modulation detection: Changes in carrier level have little effect on modulation discrimination; changes in modulation frequency also have little effect except for standards near the modulation detection threshold. The discrimination of modulation depth is consistent with the leaky-integrator model of modulation detection for standards below--10 dB (20 log ms); for standards greater than--10 dB, the leaky integrator predicts better performance than that observed behaviorally.  相似文献   

12.
Three experiments tested the hypothesis that fundamental frequency (fo) discrimination depends on the resolvability of harmonics within a tone complex. Fundamental frequency difference limens (fo DLs) were measured for random-phase harmonic complexes with eight fo's between 75 and 400 Hz, bandpass filtered between 1.5 and 3.5 kHz, and presented at 12.5-dB/component average sensation level in threshold equalizing noise with levels of 10, 40, and 65 dB SPL per equivalent rectangular auditory filter bandwidth. With increasing level, the transition from large (poor) to small (good) fo DLs shifted to a higher fo. This shift corresponded to a decrease in harmonic resolvability, as estimated in the same listeners with excitation patterns derived from measures of auditory filter shape and with a more direct measure that involved hearing out individual harmonics. The results are consistent with the idea that resolved harmonics are necessary for good fo discrimination. Additionally, fo DLs for high fo's increased with stimulus level in the same way as pure-tone frequency DLs, suggesting that for this frequency range, the frequencies of harmonics are more poorly encoded at higher levels, even when harmonics are well resolved.  相似文献   

13.
As part of an ongoing study of auditory aging, detection of sinusoidal and quasitrapezoidal frequency modulation (FM) was measured with a 5-Hz modulation frequency and 500- and 4000-Hz carriers in two experiments. In Experiment 1, psychometric functions for FM detection were measured with several modulation waveform time patterns in younger adults with normal hearing. Detection of a three-cycle modulated signal improved when its duration was extended by a preceding unmodulated cycle, an effect similar to adding a modulated cycle. In Experiment 2, FM detection was measured for younger and older adults with normal hearing using two psychophysical methods. Similar to frequency discrimination, FM detection was poorer in older than younger subjects and age-related differences were larger at 500 Hz than at 4000 Hz, suggesting that FM detection with low modulation frequencies and frequency discrimination may share common underlying mechanisms. One mechanism is likely related to temporal information coded by neural phase locking which is strong at low frequencies and decreases with increasing frequency, as observed in animals. The frequency-dependent aging effect suggests that this temporal mechanism may be affected by age. The effect of psychophysical method was sizable and frequency dependent, whereas the effect of modulation waveform was minimal.  相似文献   

14.
The ability to segregate two spectrally and temporally overlapping signals based on differences in temporal envelope structure and binaural cues was investigated. Signals were a harmonic tone complex (HTC) with 20 Hz fundamental frequency and a bandpass noise (BPN). Both signals had interaural differences of the same absolute value, but with opposite signs to establish lateralization to different sides of the medial plane, such that their combination yielded two different spatial configurations. As an indication for segregation ability, threshold interaural time and level differences were measured for discrimination between these spatial configurations. Discrimination based on interaural level differences was good, although absolute thresholds depended on signal bandwidth and center frequency. Discrimination based on interaural time differences required the signals' temporal envelope structures to be sufficiently different. Long-term interaural cross-correlation patterns or long-term averaged patterns after equalization-cancellation of the combined signals did not provide information for the discrimination. The binaural system must, therefore, have been capable of processing changes in interaural time differences within the period of the harmonic tone complex, suggesting that monaural information from the temporal envelopes influences the use of binaural information in the perceptual organization of signal components.  相似文献   

15.
A common metric of auditory temporal processing is the difference in the threshold for a pure-tone signal masked by either unmodulated or amplitude-modulated noise. This technique may be viewed as a modification of the masking period pattern technique. Such measurements have been proposed as an efficient means of estimating auditory temporal resolution in a clinical setting, although in many cases threshold differences may reflect additional spectro-temporal processes. The primary purpose of the present experiment was to examine interactions among signal frequency and masker bandwidth and the effects of modulation frequency on modified masking period patterns. The results revealed unmodulated-modulated threshold differences that increased with increasing masker bandwidth and decreased with increasing modulation frequency. There was little effect of signal frequency for narrow-band noise maskers that were equal in absolute bandwidth across frequency. However, unmodulated-modulated threshold differences increased substantially with increasing signal frequency for bandwidths proportional to the signal frequency and for wideband maskers. Although the results are interpreted in terms of a combination of both within-channel and across-channel cues, the specific contributions of these cues in particular conditions are difficult to ascertain. Because modified masking period patterns depend strongly upon a number of specific stimulus parameters, and because it is difficult to determine with any precision the underlying perceptual processes, this technique is not recommended for use as a clinical measure of auditory temporal processing.  相似文献   

16.
This study aimed to clarify the basic auditory and cognitive processes that affect listeners' performance on two spatial listening tasks: sound localization and speech recognition in spatially complex, multi-talker situations. Twenty-three elderly listeners with mild-to-moderate sensorineural hearing impairments were tested on the two spatial listening tasks, a measure of monaural spectral ripple discrimination, a measure of binaural temporal fine structure (TFS) sensitivity, and two (visual) cognitive measures indexing working memory and attention. All auditory test stimuli were spectrally shaped to restore (partial) audibility for each listener on each listening task. Eight younger normal-hearing listeners served as a control group. Data analyses revealed that the chosen auditory and cognitive measures could predict neither sound localization accuracy nor speech recognition when the target and maskers were separated along the front-back dimension. When the competing talkers were separated along the left-right dimension, however, speech recognition performance was significantly correlated with the attentional measure. Furthermore, supplementary analyses indicated additional effects of binaural TFS sensitivity and average low-frequency hearing thresholds. Altogether, these results are in support of the notion that both bottom-up and top-down deficits are responsible for the impaired functioning of elderly hearing-impaired listeners in cocktail party-like situations.  相似文献   

17.
This study presents a psychoacoustic analysis of the integration of spectral and temporal cues in the discrimination of simple nonspeech sounds. The experimental task was a same-different discrimination between a standard and a comparison pair of tones. Each pair consists of two 80-ms, 1500-Hz tone bursts separated by a 60-ms interval. The just-discriminable (d' = 2.0) increment in duration delta t, of one of the bursts was measured as a function of increments in the frequency delta f, of the other burst. A trade off between the values of delta t and delta f required to perform at d' = 2.0 was observed, which suggests that listeners integrate the evidence from the two dimensions. Integration occurred with both sub- and supra-threshold values of delta t or delta f, regardless of the order in which the cues were presented. The performance associated to the integration of cues was found to be determined by the discriminability of delta t plus that of delta f, and thus, it is within the psychophysical limits of auditory processing. To a first approximation the results agreed with the prediction of orthogonal vector summation of evidence stemming from signal detection theory. It is proposed that the ability to integrate spectral and temporal cues is in the repertoire of auditory processing capabilities. This integration does not appear to depend on perceiving sounds as members of phonetic classes.  相似文献   

18.
Frequency resolution and three tasks of frequency discrimination were measured at 500 and 4000 Hz in 12 normal and 12 hearing-impaired listeners. A three-interval, two-alternative forced-choice procedure was used. Frequency resolution was measured with an abbreviated psychoacoustical tuning curve. Frequency discrimination was measured for (1) a fixed-frequency standard and target, (2) a fixed-frequency standard and a frequency-transition target, and (3) frequency-transition standard and a frequency-transition target. The 50-ms frequency transitions had the same final frequency as the standards, but the initial frequency was lowered to obtain about 79% discrimination performance. There was a strong relationship between poor frequency resolution and elevated pure-tone thresholds, but only a very weak relationship between poor frequency discrimination and elevated pure-tone thresholds. Several hearing-impaired listeners had normal discrimination performance together with pure-tone thresholds of 80-90 dB HL. A slight correlation was found between word recognition and frequency discrimination, but a detailed comparison of the phonetic errors and either the frequency-discrimination or frequency-resolution tasks failed to suggest any consistent interdependencies. These results are consistent with previous work that has suggested that frequency resolution and frequency discrimination are independent processes.  相似文献   

19.
This study considered consequences of sensorineural hearing loss in ten listeners. The characterization of individual hearing loss was based on psychoacoustic data addressing audiometric pure-tone sensitivity, cochlear compression, frequency selectivity, temporal resolution, and intensity discrimination. In the experiments it was found that listeners with comparable audiograms can show very different results in the supra-threshold measures. In an attempt to account for the observed individual data, a model of auditory signal processing and perception [Jepsen et al., J. Acoust. Soc. Am. 124, 422-438 (2008)] was used as a framework. The parameters of the cochlear processing stage of the model were adjusted to account for behaviorally estimated individual basilar-membrane input-output functions and the audiogram, from which the amounts of inner hair-cell and outer hair-cell losses were estimated as a function of frequency. All other model parameters were left unchanged. The predictions showed a reasonably good agreement with the measured individual data in the frequency selectivity and forward masking conditions while the variation of intensity discrimination thresholds across listeners was underestimated by the model. The model and the associated parameters for individual hearing-impaired listeners might be useful for investigating effects of individual hearing impairment in more complex conditions, such as speech intelligibility in noise.  相似文献   

20.
For all but the most profoundly hearing-impaired (HI) individuals, auditory-visual (AV) speech has been shown consistently to afford more accurate recognition than auditory (A) or visual (V) speech. However, the amount of AV benefit achieved (i.e., the superiority of AV performance in relation to unimodal performance) can differ widely across HI individuals. To begin to explain these individual differences, several factors need to be considered. The most obvious of these are deficient A and V speech recognition skills. However, large differences in individuals' AV recognition scores persist even when unimodal skill levels are taken into account. These remaining differences might be attributable to differing efficiency in the operation of a perceptual process that integrates A and V speech information. There is at present no accepted measure of the putative integration process. In this study, several possible integration measures are compared using both congruent and discrepant AV nonsense syllable and sentence recognition tasks. Correlations were tested among the integration measures, and between each integration measure and independent measures of AV benefit for nonsense syllables and sentences in noise. Integration measures derived from tests using nonsense syllables were significantly correlated with each other; on these measures, HI subjects show generally high levels of integration ability. Integration measures derived from sentence recognition tests were also significantly correlated with each other, but were not significantly correlated with the measures derived from nonsense syllable tests. Similarly, the measures of AV benefit based on nonsense syllable recognition tests were found not to be significantly correlated with the benefit measures based on tests involving sentence materials. Finally, there were significant correlations between AV integration and benefit measures derived from the same class of speech materials, but nonsignificant correlations between integration and benefit measures derived from different classes of materials. These results suggest that the perceptual processes underlying AV benefit and the integration of A and V speech information might not operate in the same way on nonsense syllable and sentence input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号